Advertisement

Space Science Reviews

, Volume 105, Issue 3–4, pp 535–560 | Cite as

The Genesis Solar-Wind Collector Materials

  • A.J.G. Jurewicz
  • D.S. Burnett
  • R.C. Wiens
  • T.A. Friedmann
  • C.C. Hays
  • R.J. Hohlfelder
  • K. Nishiizumi
  • J.A. Stone
  • D.S. Woolum
  • R. Becker
  • A.L. Butterworth
  • A.J. Campbell
  • M. Ebihara
  • I.A. Franchi
  • V. Heber
  • C.M. Hohenberg
  • M. Humayun
  • K.D. McKeegan
  • K. McNamara
  • A. Meshik
  • R.O. Pepin
  • D. Schlutter
  • R. Wieler
Article

Abstract

Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection.

Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components.

Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability.

A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century.

Keywords

Solar Wind Sapphire Bulk Metallic Glass Solar Energetic Particle Collector Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, T. M., Friedmann, T. A., and Jurewicz, A. J. G.: 2001, 'Solid State 13C MAS NMR Investigations of Amorphous Carbon Thin Films: Structural Changes During Annealing', Thin Films: Preparation, Characterization, and Applications, Proc., Am. Chem. Soc. Meeting April 1–5, 2001, San Diego, CA.Google Scholar
  2. Anders, E. and Grevesse, N.: 1989, 'Abundances of the Elements: Meteoritic and Solar', Geochim. Cosmochim. Acta 53, 197–214.CrossRefADSGoogle Scholar
  3. Anthony, T. R., and Fleischer, J. F.,: 1992, Transparent Diamond Films and Method for Making, General Electric Company, Schenectady NY, assignee. US Pat. #5,110,579.Google Scholar
  4. Anthony, T. R., and Fleischer, J. F.,: 1993, Substantially Transparent Free Standing Diamond Films, General Electric Company, Schenectady NY, assignee. US Pat. #5,273,731.Google Scholar
  5. Burnett, D. S., Barraclough, B. L., Bennett, R., Neugebauer, M., Oldham, L. P., Sasaki, C. N., Sevilla, D., Smith, N., Stansbery, E., Sweetnam, D., and Wiens, R. C: 2003, 'The Genesis Discovery Mission: Return of Solar Matter to Earth,' Space Sci. Rev., this volume.Google Scholar
  6. Butterworth, A. L., Franchi, I. A., and Pillinger, C. T.: 2000, 'Solar Wind Sample Return from Genesis: Towards the Extraction and Isotope Ratio Measurement of Nanogram Quantities of Oxygen Implanted into Diamond', LPSC XXXI (cd-rom) 1704.pdf.Google Scholar
  7. Fissel, A., Kaiser, U., Ducke, E., Schroter, B., and Richter, W.: 1995, 'Epitaxial Growth of SiC Thin Films on Si-stabilized SiC (0001) at Low Temperatures by Solid-Source Molecular Beam Epitaxy', J. Crys. Growth 154, 72–80.CrossRefGoogle Scholar
  8. Friedmann, T. A., Siegal, M. P., Tallant, D. R., Simpson, R. L., and. Dominguez, R. L.: 1994, in: C. L. Renschler, D. Cox, J. Pouch, and Y. Achiba Novel Forms of Carbon II, Materials Research Society, Pittsburg, pp. 501–506.Google Scholar
  9. Hays, C. C., Schroers, J., Johnson, W. L., Rathz, T. J., Hyers, R. W., Rogers, J. R., and Robinson, M. B.; 2001, 'Vitrification and Determination of the Crystallization Time Scales of the Bulk-Metallic-Glass-Forming Liquid Zr58.5Nb2.8Cu15.6Ni12.8Al10.3', Appl. Phys. Letters 79, 1605.CrossRefADSGoogle Scholar
  10. Heber, V. S.: 2002, 'Ancient SolarWind Noble Gases in Lunar and Meteoritic Archives and Tests for Modern Solar Wind Collection with the Genesis Mission', Thesis ETH, Zürich.Google Scholar
  11. Humayun, M., Campbell, A. J., Burnett, D. S., and Jurewicz, A.: 2001:, 'Improving the s/n of HR-ICP/MS: Determining the elemental composition of the solar wind from Nasa's Genesis Spacecraft Mission', Federation of Analytical Chemistry and Spectroscopy Societies. Detroit, MI (October 7–12, 2001)., abst. #340.Google Scholar
  12. Jurewicz, A. J. G., Burnett, D. S., Wiens, R. C., and D.Woolum,: 2000, 'Genesis Solar-Wind Sample Return Mission: The Materials', LPSC XXXI (cd-rom) 1783.pdf.Google Scholar
  13. Meshik, A. P., Hohenberg, C. M., Burnett, D. S., Woolum, D. S., and Jurewicz, A. J. G.; 2000, 'Release Profile as an indicator of Solar Wind Neon Loss from Genesis Collectors', Meteorit. Planetary Sci. 35, A109-A109.Google Scholar
  14. Nordholt, J. E., Wiens, R. C., Abeyta, R. A., Baldonado, J. R., Burnett, D. S., Casey, P., Everett, D. T., Lockhart, W., McComas, D. J., Mietz, D. E., MacNeal, P., Mireles, V., Moses, R. W. Jr., Neugebauer, M., Poths, J., Reisenfeld, D. B., Storms, S. A., and Urdiales, C.: 2003, 'The Genesis Solar Wind Concentrator'. Space Sci. Rev., this volume.Google Scholar
  15. Nishiizumi, K. and Caffee, M. W.: 2001, 'Beryllium-10 from the Sun', Science 294, 352–354.CrossRefADSGoogle Scholar
  16. O'Mara, W. C., Herring, R. B., and Hunt, L. P. (eds): 1990, Handbook of Semiconductor Silicon Technology, Noyes Publications, Park Ridge N.J.Google Scholar
  17. Powell, A., Petit, J.B., and Matus, L.G.,: 1991, 'Advances in silicon carbide chemical vapor deposition (CVD) for semiconductor device fabrication' NASA Tech. Memo 104410., prep for 1st Intl. High Temp. Elect. Conf., Albuquerque, NM (June 15–20, 1991)Google Scholar
  18. Scott, C. E., Levinson, L. M., Maxwell, R. E., and Kaliszewski, M. S.; 1995, 'Solid state thermal conversion of polycrystalline alumina to sapphire' US Patent #5,451,553, 5–6.Google Scholar
  19. Stansbery, E. K., Cyr, K. E., Allton, J. H., Schwarz, C. M., Warren, J. L., Schwandt, C. S., and Hittle, J. D.: 2001, 'Genesis Discovery Mission: Science canister processing at JSC', LPSC XXXII (cd-rom) 2064.pdf.Google Scholar
  20. Treiman, A. H.; 1993, 'Curation of solar wind collector plates from a solar wind sample return (SWSR) spacecraft mission', JSC doc. #26406.Google Scholar
  21. Wiens, R. C. and Burnett, D. S.: 1999, 'The Genesis Web Page', http://www.gps.caltech.edu/genesis.Google Scholar
  22. Wiens, R. C., Neugebauer, M., Reisenfeld, D. B., Moses, R. W. Jr., and Nordholt, J. E.: 2003, 'Genesis Solar Wind Concentrator: Computer Simulations of Performance Under Solar Wind Conditions'. Space Sci. Rev., this volume.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.J.G. Jurewicz
    • 1
  • D.S. Burnett
    • 2
  • R.C. Wiens
    • 3
  • T.A. Friedmann
    • 4
  • C.C. Hays
    • 1
    • 2
  • R.J. Hohlfelder
    • 4
  • K. Nishiizumi
    • 5
  • J.A. Stone
    • 1
  • D.S. Woolum
    • 6
  • R. Becker
    • 7
  • A.L. Butterworth
    • 8
  • A.J. Campbell
    • 9
  • M. Ebihara
    • 10
  • I.A. Franchi
    • 8
  • V. Heber
    • 11
  • C.M. Hohenberg
    • 12
  • M. Humayun
    • 11
  • K.D. McKeegan
    • 13
  • K. McNamara
    • 14
  • A. Meshik
    • 12
  • R.O. Pepin
    • 7
  • D. Schlutter
    • 7
  • R. Wieler
    • 11
  1. 1.Jet Propulsion Laboratory/California Institute of Technology
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Sandia National LabsAlbuquerqueUSA
  5. 5.Space Sciences Lab. U. CalifBerkeleyUSA
  6. 6.Dept. of PhysicsCalif. St. UFullertonUSA
  7. 7.Dept. of Physics, U. MinnesotaMinneapolisUSA
  8. 8.Planetary Science Research Institute, Open UMilton KeynesU.K
  9. 9.Dept. of Geophysical Sciences, U. of ChicagoChicagoUSA
  10. 10.Dept. of ChemistryTokyo Metropolitan UniversityUSA
  11. 11.Institute for Isotope Geology and Mineral ResourcesETH ZürichSwitserland
  12. 12.Dept. Of PhysicsWashington USt. LouisUSA
  13. 13.Dept. of Earth and Space SciencesUCLALos AngelesUSA
  14. 14.NASA Johnson Space CenterHoustonUSA

Personalised recommendations