Advertisement

Hydrobiologia

, Volume 491, Issue 1–3, pp 331–346 | Cite as

Effects of different fish species and biomass on plankton interactions in a shallow lake

  • Adrian E. Williams
  • Brian Moss
Article

Abstract

Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha−1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.

cyprinid fish zooplankton phytoplankton trophic cascade biomanipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartell, S. M., 1981. Potential impact of size selective planktivory on P release by zooplankton. Hydrobiologia 80: 139-146.Google Scholar
  2. Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbright-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 420-456.Google Scholar
  3. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28-35.Google Scholar
  4. Burns, C. W., 1968. The relationship between body size and filterfeeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 12: 675-678.Google Scholar
  5. Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnol. Oceanogr. 14: 693-700.Google Scholar
  6. Carpenter, S. R. & J. F. Kitchell, 1992. Trophic cascade and biomanipulation: Interface of research and management - A reply to the comment by de Melo et al. Limnol. Oceanogr. 37: 208-213.Google Scholar
  7. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Biosciences 35: 634- 639.Google Scholar
  8. De Bernardi, R., 1984. Methods for the estimation of zooplankton abundance. In Downing, J. A. & F. H. A. Rigler (eds), Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. 2nd edn. International Biological Programme Handbook no. 17. Blackwell Scientific Publications, Oxford: 501 pp.Google Scholar
  9. De Bernardi, R., G. Giussani & E. Lasso Pedretti, 1981. The significance of blue-green algae as food for filter-feeding zooplankton: experimental studies on Daphnia spp. fed by Microcystis aeruginosa. Verh. int Ver. theor. ang. Limnol. 21: 477-483.Google Scholar
  10. De Melo, R., R. France & D. J. McQueen, 1992. Biomanipulation: Hit or myth? Limnol. Oceanogr. 37: 192-207.Google Scholar
  11. Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size efficiency hypothesis. Ecology 55: 605-613.Google Scholar
  12. Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimation of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75-97.Google Scholar
  13. Duncan, A., 1997. Quantifying the fish-zooplankton interaction as an ecosystem response. A historical account of the 16th PEG Meeting 1984. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 49: 139-152.Google Scholar
  14. Ganon, J. E. & S. A. Ganon, 1975. Observations on the narcotization of crustacean zooplankton. Crustaceana 28: 220-224.Google Scholar
  15. Gentile, J. H. & T. E. Maloney, 1969. Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs. Can. J. Microbiol. 15: 165-173.PubMedGoogle Scholar
  16. Gibson, C. E., 1971. Nutrient limitation. J.Wat poll. Contr. Fed. 43: 2436-2440.Google Scholar
  17. Giles, N., 1998. Freshwater fisheries and wildlife conservation, a good practice guide. Environment Agency Publication, Bristol: 38 pp.Google Scholar
  18. Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ecol. Pol. 25: 179-225.Google Scholar
  19. Harding, J. P. & W. A. Smith, 1974. A Key to the British Freshwater Cyclopoid and Calanoid Copepods. 2nd edn. Freshwater Biological Association Scientific Publication no. 18. Titus Wilson & Son ltd., Kendal: 56 pp.Google Scholar
  20. Hrbacek, J., K. Bvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of the zooplankton and the intensity of metabolism of the whole plankton association. Verh. int. Ver. theor. ang. Limnol. 14: 192-195.Google Scholar
  21. Irvine, K., B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds and conclusions. Freshwat. Biol. 22: 89-107.Google Scholar
  22. Lampert, W., 1977. Studies on the carbon balance on Daphnia pulex as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch. Hydrobiol. Suppl. 48: 310-335.Google Scholar
  23. Lazzaro, X., 1987. A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities and impacts. Hydrobiologia 146: 97-167.Google Scholar
  24. Lazzaro, X., R. W. Drenner, R. A. Stein & J. D. Smith, 1992. Planktivores and plankton dynamics: effects of fish biomass and planktivore type. Can. J. Fish. aquat. Sci. 49: 1466-1473.Google Scholar
  25. Lund, J. W. G., C. Kipling & E. D. le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143-170.Google Scholar
  26. Lynch, M., 1979. Predation, competition and zooplankton community structure: an experimental study. Limnol. Oceanogr. 24: 253-272.Google Scholar
  27. Lynch, M. & J. Shapiro, 1981. Predation, enrichment and phytoplankton community structure.Limnol. Oceanogr. 26: 1, 86-102.Google Scholar
  28. Marsden, M. W., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwat. Biol. 21: 139-162.Google Scholar
  29. McQueen, D. J., 1990. Manipulating lake community structure: where do we go from here? Freshwat. Biol. 23: 613-620.Google Scholar
  30. Meijer, M. L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fishstock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276: 457-466.Google Scholar
  31. Meijer, M. L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of light transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303-315.Google Scholar
  32. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367-77.Google Scholar
  33. Moss, B., M. Beklioglu, L. Carvalho, S. Kilinc, S. McGowan & D. Stephen, 1997. Vertically challenged limnology; contrasts between deep and shallow lakes. Hydrobiologia 342/343: 257-267.Google Scholar
  34. Moss, B. & R. T. Leah, 1982. Changes in the ecosystem of a guanotrophic and brackish shallow lake in eastern England; potential problems in its restoration. Int. Rev. ges Hydrobiol. 67: 625-639.Google Scholar
  35. Moss, B., J. Madgwick & G. Phillips, 1996. A Guide to the Restoration of Nutrient Enriched Shallow Lakes. Broads Authority, Environment Agency and EU Life Programme, Norwich: 180 pp.Google Scholar
  36. Muller-Solger, A., M. T. Brett, C. Luecke, J. J. Elser & C. R. Goldman, 1997. The effects of planktivorous fish (golden shiners) on the ciliate community of a mesotrophic lake. J. Plankton Res. 19: 1815-1828.Google Scholar
  37. Northcote, T. G., 1988. Fish in the Structure and Function of Freshwater Ecosystems: A 'Top-down' view. Can. J. Fish. aquat. Sci. 45: 361-379.Google Scholar
  38. Ozimek, T., R. D. Gulati & E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The lake Zwemlust example. Hydrobiologia 200/201: 399-409.Google Scholar
  39. Pennak, R. W., 1953. Freshwater Invertebrates of the United States. Ronald Press, New York: 769 pp.Google Scholar
  40. Porter, K. G., 1973. Selective grazing and digestion of algae by zooplankton. Nature 244: 179-180.Google Scholar
  41. Rigler, F. H., 1973. A dynamic view of the phosphorus cycle in lakes. In Giffith, E. J., A. Beeton, J. M. Spencer & D. T. Michell (eds), Environmental Phosphorus Handbook. Wiley & Sons, Toronto: 539-583.Google Scholar
  42. Rosen, R. A., 1981. Length-dry weight relationships of some freshwater zooplankton. J. Freshwat. Ecol. 1: 225-229.Google Scholar
  43. Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475-486.Google Scholar
  44. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. T.R.E.E. 8: 275- 279.Google Scholar
  45. Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260-262.Google Scholar
  46. Schriver, P., J. Bogestrand, E. Jeppesen & M. Sondergaard, 1995. Impact of submerged macrophytes on fish-zooplankton- phytoplankton interactions: large scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255-270.Google Scholar
  47. Scourfield, D. J. & J. P. Harding, 1966. A Key to the British Species of Freshwater Cladocera. 3rd edn. Freshwater Biological Association Scientific Publication no. 5. TitusWilson & Son ltd., Kendal: 61 pp.Google Scholar
  48. Shapiro, J. H., V. Lamarra & M. Lynch, 1975. Biomanipulation; an ecosystem approach to lake restoration. In: Water Quality Management through Biological Control. Symposium proceedings, University Florida: 85-96.Google Scholar
  49. Shapiro, J. H. & D. I. Wright, 1984. Lake restoration by manipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371-383.Google Scholar
  50. Smith, V. H., 1983. Low nitrogen - phosphorus ratios favour dominance by blue-green algae in lake phytoplankton. Science 221: 669-671.Google Scholar
  51. Stephen, D., 1997. The role of macrophytes in shallow lake ecosystems: whole-lake, mesocosm and laboratory approaches. Ph.D. Thesis, University of Liverpool.Google Scholar
  52. Stephen, D., B. Moss & G. Phillips, 1998. The relative importance of top-down and bottom-up control in a shallow macrophytedominated lake. Freshwat. Biol. 39: 699-713.Google Scholar
  53. Talling, J. F. & D. Driver, 1961. Some problems in the estimation of chlorophyll a in phytoplankton. In Doty, M. S. (ed.), Proc. Conf. Primary Production Measurement, Marine and Freshwater. Univ. Hawaii, U.S. Atomic Energy Commission Publ. TID 7633.Google Scholar
  54. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472-486.Google Scholar
  55. van Donk, E., R. D. Gulati & M. P. Grimm, 1989. Food web manipulation in Lake Zwemlust: positive and negative effects during the first two years. Hydrobiol. Bull. 23: 19-34.Google Scholar
  56. Vanni, M. J. & D. L. Findlay, 1990. Trophic cascades and phytoplankton community structure. Ecology 71: 921-937.Google Scholar
  57. Vanni, M. J., 1987. Effects of nutrients and zooplankton size on the structure of a phytoplankton community. Ecology 68: 624-635.Google Scholar
  58. Varley, M. E., 1989. British freshwater fishes: factors affecting their distribution. Fishing News Books Ltd.: 148 pp.Google Scholar
  59. Williams, A. E., 1999. Effects of coarse fish in shallow lake ecosystems: an ecological and sociological appraisal. Ph.D. Thesis, University of Liverpool.Google Scholar
  60. Winfield, I. J., G. Peirson, M. Cryer & C. R. Townsend, 1983. The behavioural basis of prey selection by underyearling bream (Abramis brama (L.)) and roach (Rutilus rutilus (L.)). Freshwat. Biol. 13: 139-149.Google Scholar
  61. Winkler, H. & C. P. Orellana, 1992. Functional response of five cyprinid species to planktonic prey. Envir. Biol. Fishes 33: 53-62.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Adrian E. Williams
    • 1
  • Brian Moss
    • 1
  1. 1.Derby Building, School of Biological SciencesUniversity of LiverpoolLiverpoolU.K.

Personalised recommendations