Virus Genes

, Volume 26, Issue 3, pp 291–315 | Cite as

The Evolution, Distribution and Diversity of Endogenous Retroviruses

  • Robert Gifford
  • Michael Tristem


The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.

alpharetrovirus betaretrovirus class I class II class III deltaretrovirus epsilonretrovirus ERV gammaretrovirus lentivirus retrovirus spumavirus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boeke J.D. and Stoye J.P., Retrotransposons, endogenous retroviruses, and the evolution of retroelements, in Coffin J.M., Hughes S.H., and Varmus H.E. (eds.), Retroviruses, CSHL Press, New York, 1997, pp. 343-435.Google Scholar
  2. 2.
    Coffin J.M., Hughes S.H., Varmus H.E., The interactions of retroviruses and their hosts, in Coffin J.M., Hughes S.H., and Varmus H.E. (eds.), Retroviruses, CSHL Press, New York, 1997, pp. 335-341.Google Scholar
  3. 3.
    Vogt P.K., Historical introduction to the general properties of retroviruses, in Coffin J.M., Hughes S.H., and Varmus H.E., (eds.), Retroviruses, CSHL Press, New York, 1997, pp. 1-25.Google Scholar
  4. 4.
    van Regenmortel M.H.V. et al., Academic Press, San Diego, 2000, p. 1167.Google Scholar
  5. 5.
    Stoye J.P., Endogenous retroviruses: Still active after all these years? Burr Biol 11, R914-R916, 2001.Google Scholar
  6. 6.
    Maynard Smith J., Haigh J., The hitchhiking effect of a favourable gene. Genet Res 23, 23-35, 1974.Google Scholar
  7. 7.
    Tristem M., Identification and characterisation of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74, 3715-3730, 2000.Google Scholar
  8. 8.
    Yoder J.A., Walsh C.P., Bestro T.H., Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335-340, 1997.Google Scholar
  9. 9.
    Waugh O'Neill R.J., Waugh O'Neill M.J., Graves J.A., Undermethylation associated with chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68-72, 1998.Google Scholar
  10. 10.
    Barbulescu M., Turner G., and Su M., Kim R., Jensen-Seaman M.L., Deinhard A.S., Kidd K.K., Lenz J., A HERV-K provirus in chimpanzees, bonobos and gorillas, but not humans. Curr Biol 11, 779-783, 2001.Google Scholar
  11. 11.
    Reus K., and Mayer J., Sauter M., Zischler H., Müller-Lantzsch N., Meese E., HERV-K(OLD): Ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol 75, 8917-8926, 2001.Google Scholar
  12. 12.
    Best S., and LeTissier G., Towers G., Stoye J.P., Positional cloning of the mouse retrovirus restriction gene Fvl. Nature 382, 826-829, 1996.Google Scholar
  13. 12A.
    Stoye J., An intracellular block to private lentivirus replication. Proc Natl Acad Sci 99, 11549-11551.Google Scholar
  14. 13.
    Venables P.J.W., Brookes S.M., Griffiths D., Weiss R.A., and Boyd M.T., Abundance of an endogenous retroviral envelope protein in placental trophoblasts suggests a biological function. Virology 211, 589-592, 1995.Google Scholar
  15. 14.
    Andersson A.-C., Venables P.J.W., Tönjes R.R., Scherer J., Eriksson L., and Larsson E., Developmental expression of HERV.R (ERV.3) and HERV.K in human tissue. Virology 297, 220-225, 2002.Google Scholar
  16. 15.
    Mi S., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789, 2000.Google Scholar
  17. 16.
    Ting C.N., Rosenburg M.P., Snow C.M., Samuelson L.C., and Meisler M.H., Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Gen Dev 6, 1457-1465, 1992.Google Scholar
  18. 17.
    Samuelson L.C., Phillips R.S., and Swanberg L.J., Amylase gene structures in primates: Retroposon insertions and promotor evolution. Mol Biol Evol 13, 767-779, 1996.Google Scholar
  19. 18.
    Swanstrom R., and Wills J.W., Synthesis, assembly, and processing of viral proteins, in Coffin J.M., Hughes S.H., and Varmus H.E. (eds.), Retroviruses, CSHL Press, New York, 1997, pp. 263-334.Google Scholar
  20. 19.
    Muriaux D., Mirro J., Nagashima K., Harvin D., and Rein A., Murine leukaemia virus nucleocapsid mutant particles lacking viral RNA encapsidate ribosomes. J Virol 76, 11405-11413, 2002.Google Scholar
  21. 20.
    Muriaux D., Mirro J., Harvin D., and Rein A., RNA is a structrual element in retrovirus particles. Proc Natl Acad Sci USA 98, 5246-5251, 2001.Google Scholar
  22. 21.
    Browing M.T., Schmidt R.D., Lew K.A., and Rizvi T.A., Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 75, 5129-5140, 2001.Google Scholar
  23. 22.
    Beasley B.E., and Hu W.-S., cis-acting elements important for retroviral RNA packaging specificity. J Virol 76, 4950-4960, 2002.Google Scholar
  24. 23.
    Certo J.L., Kabdulov T.O., Paulson M.L., Anderson J.A., and Hu W.-S., The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) gag polyprotein to package both SNV and murine leuaemia virus RNA. J Virol 73, 9170-9177, 1999.Google Scholar
  25. 24.
    Kato S., Matsuo K., Nishimura N., Takahashi N., and Takano T., The entire nucleotide sequence of baboon endogenous virus DNA: A chimeric genome structure of murine type C and simian type D retroviruses. Jpn J Genet 62, 127-137, 1987.Google Scholar
  26. 25.
    Van der Kuyl A.C., Mang R., Decker J.C., and Goudsmit J., Complete nucleotide sequence of simian endogenous type D retrovirus with intact genome organisation: Evidence for ancestry to simian retrovirus and baboon endogenous virus. J Virol 71, 3666-3676, 1997.Google Scholar
  27. 26.
    Mang R., Goudsmit J., and Van der Kuyl A.C., Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol 73, 1999.Google Scholar
  28. 27.
    Van der Kuyl A.C., Dekker J.T., and Goudsmit J., Distribution of baboon endogenous virus among species of African monkeys suggests multiple ancient cross-species transmissions in shared habitats. J Virol 69, 7877-7887, 1995.Google Scholar
  29. 28.
    Doolittle R.F., Feng D.F., McClure M.A., and Johnson M.S., Retrovirus phylogeny and evolution. Curr Top Microbiol Immunol 157, 1-18, 1990.Google Scholar
  30. 29.
    Weiss R.A., Friis R.R., Katz E., and Vogt P.K., Induction of avian tumor viruses in normal cells by physical and chemical carcinogens. Virology 46, 920-938, 1971.Google Scholar
  31. 30.
    Benveniste R.E., and Todaro G.J., Homology between type C viruses of various species as determined by molecular hybridisation. Proc Natl Acad Sci USA 70, 3316-3320, 1973.Google Scholar
  32. 31.
    Benveniste R.E., and Todaro G.J., Evolution of C-type viral genes: inheritance of exogenously acquired viral genes. Nature 252, 456-459, 1974.Google Scholar
  33. 32.
    Bonner T.I., and Todaro G.J., The evolution of baboon endogenous type C virus: related sequences in the genomes of distant species. Virology 103, 217-227, 1980.Google Scholar
  34. 33.
    Cohen J.C., and Varmus H.E., Endogenous mammery tumour virus DNA varies among wild mice and segregates during inbreeding. Nature 278, 418-423, 1979.Google Scholar
  35. 34.
    Frisby D.P., Weiss R.A., Rousell M., and Stehelin D., The distribution of endogenous retroviral sequences in the DNA of galliforme birds does not coincide with avian phylogenetic relationships. Cell 17, 1979.Google Scholar
  36. 35.
    Kröger B., and Horde I., Isolation of novel human retrovirus-related sequences by hybridization to synthetic oligonucleotides complementary to the tRNAPro primer binding site. J Virol 69, 2071-2075, 1987.Google Scholar
  37. 36.
    Lueders K.K., and Kuff E.L., Intracisternal A particle genes: Identification in the genome of Mus musculus and comparison of multiple isolates from a mouse gene library. Proc Natl Acad Sci USA 77, 3571-3575, 1980.Google Scholar
  38. 37.
    Dunwiddie C.T., Resnick R., Boyce-Jacino M., Alegre J.N., and Faras A.J., Molecular cloning and characterisation of gag-, pol, and env-related sequences in ev-chicken. J Virol 59, 669-675, 1986.Google Scholar
  39. 38.
    Ono M., Toh H., and Miyata T.A.T., Nucleotide sequence of the Syrian hamster intracisternal A—particle gene: close evolutionary relationship of type A particle gene to types B and D oncovirus genes. J Virol 55, 387-394, 1985.Google Scholar
  40. 39.
    Medstrand P., and Blomberg J., Characterization of novel reverse transcriptase encoding humanendogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. J Virol 67, 6778-6787, 1993.Google Scholar
  41. 40.
    Shih R.M., and Rush M.G., Detection of multiple, novel reverse transcriptase coding sequences in human nucleic acids; Relation to primate retroviruses. J Virol 63, 64-75, 1989.Google Scholar
  42. 41.
    Tristem M., Amplification of divergent retroelements by PCR. Biotechniques 20, 608-612, 1996.Google Scholar
  43. 42.
    Herniou E., Martin J., Miller K., Cook J., Wilkinson M., and Tristem M., Retroviral diversity and distribution in vertebrates. J Virol 72, 5955-5966, 1998.Google Scholar
  44. 43.
    Baillie G.J., and Wilkins R.J., Endogenous type D retrovirus in a marsupial, the common brushtail possum (Trichosurus vulpecula). J Virol 75, 2499-2507, 2001.Google Scholar
  45. 44.
    Consortium I.h.g.s., Initial sequencing and analysis of the human genome. Nature 409, 860-921, 2001.Google Scholar
  46. 45.
    Consortium M.g.s., Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562, 2002.Google Scholar
  47. 46.
    Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.L., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25, 3389-3402, 1997.Google Scholar
  48. 47.
    Smit A.F.A., Identification of a New, Abundant Superfamily of Mammalian LTR-Transposons. Nucl Acids Res 21, 1863-1872, 1993.Google Scholar
  49. 48.
    Griffiths D.J., Endogenous retroviruses and the human genome sequence. Gen Biol 2, 1017.1-1017.5, 2001.Google Scholar
  50. 49.
    Mayer J., and Meese E.U., The human endogenous retrovirus family HERV.K (HML-3). Genomics 80, 331-343, 2002.Google Scholar
  51. 50.
    Greenwood A.D., Lee F., Capelli C., DeSalle R., Tikhonov A., Marx P.A., and MacPhee R.D., Evolution of endogenous retrovirus-like elements of the woolly mammoth (Mammuthus primigenius) and its relatives. Mol Biol Evol 18, 840-847, 2001.Google Scholar
  52. 51.
    Coffin J.M., Structure and classification of retroviruses, in Levy J.A. (ed.), The Retroviridae, Plenum Press, New York, 1992, pp. 19-49.Google Scholar
  53. 52.
    Williams K.J., and Loeb L.A., Retroviral reverse transcriptases: Error frequencies and mutagenesis. Curr Top Microbiol Immunol 176, 165-180, 1992.Google Scholar
  54. 53.
    Sala M., and Wain-Hobson S., Are RNA viruses adapting or merely changing?. J Mol Evol 51, 12-20, 2000.Google Scholar
  55. 54.
    Xiong Y., and Eickbush T.H., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9, 3353-3362, 1990.Google Scholar
  56. 55.
    Doolittle R.F., Feng D.F., Johnson M.S., and McClure M.A., Origins and evolutionary relationships of retroviruses. Q Rev Biol 64, 1-30, 1989.Google Scholar
  57. 56.
    McClure M.A., Johnson M.S., Feng D.-F., and Doolittle R.F., Sequence comparisons of retroviral proteins: Relative rates of change and general phylogeny. Proc Natl Acad Sci USA 85, 2469-2473, 1988.Google Scholar
  58. 57.
    Bénit L., Dessen P., and Heidmann T., Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 75, 11709-11719, 2001.Google Scholar
  59. 58.
    Nandi S., and McGrath C.M., Mammary neoplasia in mice. Adv Cancer Res 17, 353-414, 1973.Google Scholar
  60. 59.
    Palmarini M., Cousens C., Dalziel R.G., Bai J., Stedman K., DeMartini J.C., and Sharp J.M., The exogenous form of jaagsiekte retrovirus is specifically associated with a contagious lung cancer of sheep. J Virol 70, 1618-1623, 1996.Google Scholar
  61. 60.
    Bock M., and Stoye J.P., Endogenous retroviruses and the human germline. Curr Opin Genet Dev 10, 2000.Google Scholar
  62. 61.
    Kim A., Terzian C., Santamaria P., Pelisson A., Prudhomme N., and Bucheton A., Retroviruses in Invertebrates—the Gypsy Retrotransposon Is Apparently an Infectious Retrovirus of Drosophila-Melanogaster. Proceedings of the National Academy of Sciences of the United States of America 91, 1285-1289, 1994.Google Scholar
  63. 62.
    Song S.U., Gerasimonva T., Kurkulos M., Boeke J.D., and Corces V.G., An env-like protein encoded by a Drosphila retroelement: Evidence that gypsy is an infectious retrovirus. Genes Dev 8, 2046-2057, 1994.Google Scholar
  64. 63.
    Peterson-Burch B.D., Wright D.A., Laten H.M., and Voystas D.F., Retroviruses in plants?. TIG 16, 151-152, 2000.Google Scholar
  65. 64.
    Martin J., Herniou E., Cook J., Waugh O'Neill R., and Tristem M., Human endogenous retrovirus type I-related viruses have an apparently widespread distribution within vertebrates. J Virol 71, 437-443, 1997.Google Scholar
  66. 65.
    Kambol R., in Biological Sciences, Imperial College, London, 2002, p. 191.Google Scholar
  67. 66.
    Miller K., Lynch C., Martin J., Herniou E., and Tristem M., Identification of multiple gypsy LTR-retrotransposon lineages in vertebrate genomes. J Mol Evol 49, 358-366, 1999.Google Scholar
  68. 67.
    Flavell A.J., Pearce S.R., Heslop-Harrison P., and Kumar A., The evolution of Tyl-copia retrotransposons in eukaryote genomes. Genetica 100, 185-195, 1997.Google Scholar
  69. 68.
    Beck G., and Habicht G.S., Immunity and the invertebrates. Sci Amer 275, 60-66, 1996.Google Scholar
  70. 69.
    Litman G.W., Sharks and the origins of vertebrate immunity. Sci Amer 275, 67-71, 1996.Google Scholar
  71. 70.
    Marchalonis J.J., Kaveri S., Lacroix-Desmazes S., and Kazatchkine M.D., Natural recoginition repertoire and the evolutionary emergence of the combinatorial immune system. FASAB J 16, 842-848, 2002.Google Scholar
  72. 71.
    Litman G.W., and Rast J.P., The organisation and structure of immunoglobulin and T-cell receptor genes in the most phylogenetically distant jawed vertebrates: evolutionary implications. Res Immunol 147, 226-233, 1996.Google Scholar
  73. 72.
    Ellerman R.N., and Bang O., Experimentalle Lekamie bei Huhnern. Zentrabl Bakeriol Parasitenkd Infectionskr Hyg Abt Orig 46, 595-609, 1908.Google Scholar
  74. 73.
    Petropoulos C., Retroviral taxonomy, protein structures, sequences, and genetic maps, in Coffin J.M. Hughes S.H., and Varmus H.E. (eds.), Retroviruses, CSHL Press, New York, 1997, pp. 757-805.Google Scholar
  75. 74.
    Schwartz D.E., Tizard R., and Gilbert W., Nucleotide Sequence of Rous Sarcoma Virus. Cell 32, 853-869, 1983.Google Scholar
  76. 75.
    Boyce-Jacino M.T., Odonoghue K., and Faras A.J., Multiple Complex Families of Endogenous Retroviruses Are Highly Conserved in the Genus Gallus. J Virol 66, 4919-4929, 1992.Google Scholar
  77. 76.
    Vogt P.K., and Friis R.R., An avian leukosis related to RSV(0). Properties and evidence for helper activity. Virology 43, 223-234, 1971.Google Scholar
  78. 77.
    Hughes S.H., Mutschler A., Bishop J.M., and Varmus H.E., Rous sarcoma virus provirus is flanked by short direct repeats of cellular DNA sequence present in only one copy prior to integration. Proc Natl Acad Sci USA 78, 4299-4305, 1981.Google Scholar
  79. 78.
    Payne L.N., Brown S.R., Bumstead N., Howes K., Frazier J.A., and Thouless M.E., A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol 72, 801-807, 1991.Google Scholar
  80. 79.
    Boyce-Jacino M.T., Resnick R., and Faras A.J., Structural and functional characterization of the unusually short long terminal repeats and their adjacent regions of a novel endogenous avian retrovirus. Virology 173, 157-166, 1989.Google Scholar
  81. 80.
    Sacco M.A., Howes K., and Venugopal K., Intact EAV-HP endogenous retrovirus in Sonnerat's jungle fowl. J Virol 75, 2029-2032, 2001.Google Scholar
  82. 81.
    Resnick R.M., Boycejacino M.T., Fu Q., and Faras A.J., Phylogenetic Distribution of the Novel Avian Endogenous Provirus Family EAV-0. J Virol 64, 4640-4653, 1990.Google Scholar
  83. 82.
    Hanafusa T., Hanafusa H., Metroka C.E., Hayward W.S., Rettenmier C.W., Sawyer R.C., Dougherty R.M., and Di Stefano H.S., Pheasant virus: New class of ribodeoxyvirus. Proc Natl Acad Sci USA 73, 1333-1337, 1976.Google Scholar
  84. 83.
    Dimcheff D.E., Drovetski S.V., Krishnan M., and Mindell D.P., Cospeciation and horizontal transmission of avian sarcoma and leukosis virus gag genes in galliform birds. J Virol 74, 3984-3995, 2000.Google Scholar
  85. 84.
    Dimcheff D.E., Krishnan M., and Mindell D.P., Evolution and characterization of tetraonine endogenous retrovirus: A new virus related to avian sarcoma and leukosis viruses. J Virol 75, 2002-2009, 2001.Google Scholar
  86. 85.
    Vogt V.M., Retroviral virions and genomes, in Coffin J.M., Hughes S.H., and Varmus H.E. (eds.), Retroviruses, CSHL Press, New York, 1997. pp. 27-69.Google Scholar
  87. 86.
    Chopra H.C., and Mason M.M., A new virus in a spontaneous mammary tumour of a rhesus monkey. Cancer Res 30, 2081, 1970.Google Scholar
  88. 87.
    Nandi J.S., Bhavalkar-Potdar V., Tikute S., and Raut C.G., A novel type D simian retrovirus naturally infecting the Indian Hanuman Langur (Semnopithecus entellus). Virology 277, 6-13, 2000.Google Scholar
  89. 87.
    A.Rosenblum L., and McClure M., Non-lentiviral primate lentiviruses in HIV and the new viruses, in Dalgleish A.G., and Weiss K.A. (eds.), Academic Press, London, 1999, pp. 252-279.Google Scholar
  90. 88.
    Jones T.W.H., Sheep pulmonary adenomatosis (Jaagsiekte). Veterinary Record 117, 210, 1985.Google Scholar
  91. 89.
    Mager D.L., and Freeman J.D., Novel mouse type D endogenous proviruses and ETn elements share long terminal repeat and internal sequences. J Virol 74, 7221-7229, 2000.Google Scholar
  92. 90.
    Benveniste R.E., and Todaro G.J., Evolution of primate oncornaviruses: An endogenous virus from langue (Presbytis spp.) with related virogene sequence in other Old World monkeys. Pro Natl Acad Sci USA 74, 4557, 1977.Google Scholar
  93. 91.
    Todaro G.J., Beneveniste R.E., Sherr C.J., Schlon J., Schidlovsky G., and Stephenson J.R., Isolation and characterisation of a new type D retrovirus from the Asian primate Presbytis obscura (spectacled langur). Virology 84, 189-194, 1978.Google Scholar
  94. 92.
    Heberling R.L., Barker S.T., Kalter S.S., Smith G.C., and Helmke R.J., Oncornavirus: isolation from a squirrel monkey (Saimiri sciureus) lung culture. Science 195, 289-292, 1977.Google Scholar
  95. 93.
    Hecht S.J., Stedman K.E., Carlson J.O., and DeMartini J.C., Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc Natl Acad Sci USA 93, 3297-3302, 1996.Google Scholar
  96. 94.
    Dalton A.J., Potter M., and Merwin R.M., Some ultrastructural characteristics of a series of primary and transplanted plasma-cell tumours of the mouse. J Natl Cancer Inst 26, 1221-1267, 1961.Google Scholar
  97. 95.
    Kuff E.L., and Leuders K.K., The intracisternal A-particle family: Structure and functional aspects. Ad Cancer Res 51, 184-276, 1988.Google Scholar
  98. 96.
    Grassi M., Girault J.M., Wang W.P., Thiery J.P., and Jouanneau J., Metastatic rat carcinoma cells express a new retrotransposon. Gene 233, 59-66, 1999.Google Scholar
  99. 97.
    Mietz J.A., Grossman Z., Lueders K.K., and Kuff E.L., Nucleotide sequence of a complete mouse intracisternal A-particle genome: relationship to known aspects of particle assembly and function. J Virol 61, 3020-3029, 1987.Google Scholar
  100. 98.
    Reuss F.U., and Schaller H.C., Cdna Sequence and Genomic Characterization of Intracisternal a-particle-related retroviral elements containing an envelope gene. J Virol 65, 5702-5709, 1991.Google Scholar
  101. 99.
    Fennelly J., Harper K., Laval S., Wright E., and Plumb M., Co-amplification of tail-to-tail copies of MuRVY and IAPE retrovial genomes on the Mus musculus Y chromosome. Mammalian Genome 7, 31-36, 1996.Google Scholar
  102. 100.
    Gross L., “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with A-K leukemic extracts, or A-K embryos. Proc Soc Exp Biol Med 76, 27-32, 1951.Google Scholar
  103. 101.
    Levy J.A., Xenotropic viruses: murine leukaemia viruses associated with NIH Swiss, NZB, and other mouse strains. Science 182, 1151-1153, 1973.Google Scholar
  104. 102.
    Shinnick T.M., Lerner R.A., and Sutcliffe J.G., Nucleotide sequence of Moloney murine leukaemia virus. Nature 293, 543-548, 1981.Google Scholar
  105. 103.
    Delassus S., Sonigo P., and Wain-Hobson S., Genetic organization of gibbon ape leukemia virus. Virology 173, 205-213, 1989.Google Scholar
  106. 104.
    Donahue P.R., Hoover E.A., Beltz G.A., Riedel N., Hirsch V.M., Overbaugh J., and Mullins J.I., Strong sequence conservation among horizontally transmissible, minimally pathogenic feline leukaemia viruses. J Virol 62, 722-731, 1988.Google Scholar
  107. 105.
    Patience C., Switzer W.M., Takeuchi Y., Griffiths D.J., Goward M.E., Heneine W., Stoye J.P., and Weiss R.A., Multiple groups of novel retroviral genomes in pigs and related species. J Virol 75, 2771-2775, 2001.Google Scholar
  108. 106.
    Purchase H.G., Ludford C., Nazerian K., and W C.H., A new group of oncogenic viruses: reticuloendotheliosis, chick syncytial, duck infectious anemia, and spleen necrosis viruses. J Natl Cancer Inst 51, 489-499, 1973.Google Scholar
  109. 107.
    Payne L.N., Biology of avian retroviruses, in Levy J.A. (ed.), The Retroviridae, Plenum Press, New York, 1992, pp. 299-389.Google Scholar
  110. 108.
    Lunger P.D., Hardy W.D., and Clark H.F., C-type particles in a reptilian tumor. J Natl Cancer Inst 52, 1231-1235, 1974.Google Scholar
  111. 109.
    Tristem M., Kabat P., Lieberman L., Linde S., Karpas A., and Hill F., Characterization of a novel murine leukemia virus-related subgroup within mammals. J Virol 70, 8241-8246, 1996.Google Scholar
  112. 110.
    Martin J., Herniou E., Cook J., Waugh O'Neill R., and Tristem M., Interclass transmission and phyletic host tracking in murine leukaemia virus related retroviruses. J Virol 73, 2442-2449, 1999.Google Scholar
  113. 111.
    Hart D., Frerichs N., Rambaut A., and Onions D.E., Complete nucleotide sequence and transcriptional analysis of the snakehead fish retrovirus. J Virol 70, 3606-3616, 1996.Google Scholar
  114. 112.
    Holzschu D.L., Martineau D., Fodor S.K., Vogt V.M., Bowser P.R., and Casey J.W., Nucleotide sequence and protein analysis of a complex piscine retrovirus, walleye dermal sarcoma virus. J Virol 69, 5320-5331, 1995.Google Scholar
  115. 113.
    LaPierre L.A., Casey J.W., and Holzschu D.L., Walleye retroviruses associated with skin tumors and hyperplasias encode cyclin D homologs. J Virol 72, 8765-8771, 1998.Google Scholar
  116. 114.
    LaPierre L.A., Holzschu D.L., Bowser P.R., and Casey J.W., Sequence and transcriptional analyses of the fish retroviruses walleye epidermal hyperplasia virus types 1 and 2: evidence for a gene duplication. J Virol 73, 9393-9403, 1999.Google Scholar
  117. 115.
    Kambol R., Kabat P., and Tristem M., Complete nucleotide sequence of an endogenous retrovirus from the amphibian, Xenopus laevis. Virology (In the Press).Google Scholar
  118. 116.
    Helps C.R., and Harbour D.A., Comparison of the complete sequence of feline spumavirus with those of the primate spumaviruses reveals a shorter gag gene. J Gen Virol 78, 2549-2564, 1997.Google Scholar
  119. 117.
    Renshaw R.W., and Casey J.W., Transcriptional mapping of the 3′ end of the bovine syncytial virus genome. J Virol 68, 1021-1028, 1994.Google Scholar
  120. 118.
    Flügel R.M., Rethwilm A., Maurer B., and Darai G., Nucleotide sequence analysis of the env gene and its flanking regions of the human spumaretrovirus reveals two novel genes. EMBO J 6, 2077-2084, 1987.Google Scholar
  121. 119.
    Cordonnier A., Casella J.-P., and Heidmann T., Isolation of novel human endogenous retroviral-like elements with foamy virus-related pol sequence. J Virol 69, 5890-5897, 1995.Google Scholar
  122. 120.
    Bénit L., deParseval N., Casella J.-F., Callebaut I., Cordonnier A., and Heidmann T., Cloning of a new murine endogenous retrovirus, MuERV.L, with strong similarity to the human HERV.L element and with a gag coding sequence closely related to the Fvl restriction gene. J Virol 71, 1997.Google Scholar
  123. 121.
    Perl A., Rosenblatt J.D., Chen I.S., DiVincenzo J.P., Bever R., Poiesz B.J., and Abraham G.N., Detection and cloning of new HTLV-relaterd endogenous sequence in man. Nucleic Acids Res 17, 6841-6854, 1989.Google Scholar
  124. 122.
    Löwer R., Löwer J., and Kurth R., The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences, PNAS 93, 5177-5184, 1996.Google Scholar
  125. 123.
    Martin J., Kabat P., Herniou E., and Tristem M., Characterization and complete nucleotide sequence of an unusual reptilian retrovirus recovered from the order Crocodylia. J Virol 76, 4651-4654, 2002.Google Scholar
  126. 124.
    Huder J.B., Böni J., Hatt J.-P., Soldati G., Lutz H., and Schüpbach J., Identification and characterization of two closely related unclassifiable endogenous retroviruses in pythons (Python molurus and Python curtus). J Virol 76, 7607-7615, 2002.Google Scholar
  127. 125.
    Beck S., and Sterk P., Genome scale DNA sequencing: where are we?. Curr Opin Biotechnol 9, 116-120, 1998.Google Scholar
  128. 126.
    Smit A.F., Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9, 657-663, 1999.Google Scholar
  129. 127.
    Prak E.T., and Kazazian H.H.J., Mobile elements and the human genome. Nature Rev Genet 1, 134-144, 2000.Google Scholar
  130. 128.
    Hughes J.F., and Coffin J.M., Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Natl Genet 29, 487-489, 2001.Google Scholar
  131. 129.
    Andersson M.L., Lindeskog M., Medstrand P., Westley B., May F., and Blomberg J., Diversity of human endogenous retrovirus class II-like sequences. J Gen Virol 80, 255-260, 1999.Google Scholar
  132. 130.
    Wilkinson D.A., Mager D.L., and Leong J.C., Endogenous human retroviruses, in Levy J.A. (ed.), The Retroviridae, Plenum Press, New York, 1994, pp. 465-535.Google Scholar
  133. 131.
    Mager D.L., and Henthorn P.S., Identification of a retrovirus-like repetitive element in human DNA. Proc Natl Acad Sci USA 81, 7510-7514, 1984.Google Scholar
  134. 132.
    Hirose Y., Takamatsu M., and Harada F., Presence of env genes in members of the RTLVH family of human endogenous retrovirus-like elements. Virology 192, 52-61, 1993.Google Scholar
  135. 133.
    Andersson M.L., Sjottem E., Svineng G., and Johansen T., Comparative analyses of LTRs of the ERV-H family of primate-specific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 234, 14-30, 1997.Google Scholar
  136. 134.
    Mager D.L., and Freeman J.D., HERV.H endogenous retroviruses-presence in the new-world branch but amplification in the old-world primate lineage. Virology 213, 395-404, 1995.Google Scholar
  137. 135.
    Shih A., Couvavas E.E., and Rush M.G., Evolutionary implications of primate endogenous retroviruses. Virology 182, 495-501, 1991.Google Scholar
  138. 136.
    Kim H.S., Takenaka O., and Crow T.J., Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J Gen Virol 80, 2613-2619, 1999.Google Scholar
  139. 137.
    Mayer J., Meese E., and Müeller-Lantzsch N., Human endogenous retrovirus K homologous sequences and their coding capacity in old world primates. J Virol 72, 1870-1875, 1998.Google Scholar
  140. 138.
    Barbulescu M., Turner G., Seaman M.L., Deinard A.S., Kidd K.K., and Lenz J., Many human endogenous retrovirus K (HERV.K) proviruses are unique to humans. Curr Biol 9, 861-868, 1999.Google Scholar
  141. 139.
    Mayer J., Sauter M., Racz A., Scherer D., Müller-Lantzsch N., and Meese E., An almost-intact human endogenous retrovirus K on human chromosome 7. Nat Genet 21, 257-258, 1999.Google Scholar
  142. 140.
    Turner G., Barbulescu M., Su M., Jensen-Seaman M.L., Kidd K.K., and Lenz J., Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 11, 1531-1535, 2001.Google Scholar
  143. 141.
    Reus K., Meyer J., Sauter M., Scherer D., Müller-Lantzsch N., and Meese E., Genome organisation of the human endogenous retrovirus HERV.K (HML-2HOM) (ERVK6) on chromosome 7. Genomics 72, 314-320, 2001.Google Scholar
  144. 142.
    Paces J., Pavlicek A., and Paces V., HERVd: database of human endogenous retroviruses. Nucleic Acids Res 30, 205-206, 2002.Google Scholar
  145. 143.
    Kjellman C., Sjogren H.O., Salford L.G., and Widegren B., HERV.F(XA-34) is a full-length human endogenous retrovirus expressed in placental and fetal tissues. Gene 239, 99-107, 1999.Google Scholar
  146. 144.
    Lindeskog M., Mager D.L., and Blomberg J., Isolation of a human endogenous retroviral HERV.H element with an open env reading frame. Virology 258, 441-450, 1999.Google Scholar
  147. 145.
    Blond J.L., Beseme F., Duret L., Bouton O., Bedin F., Perron H., Mandrand B., and Mallet F., Molecular characterisation and placental expression of HERV.W, a new human endogenous retrovirus family. J Virol 73, 1175-1185, 1999.Google Scholar
  148. 146.
    Wilkinson D.A., Goodchild N.L., Saxton T.M., Wood S., and Mager D.L., Evidence for a functional subclass of the RTLV-H family of human endogenous retrovirus-like sequences. J Virol 67, 2981-2989, 1993.Google Scholar
  149. 147.
    Lindeskog M., Medstrand P., Cunningham A.A., and Blomberg J., Coamplification and dispersion of adjacent human endogenous retroviral HERV.H and HERV.E elements; presence of spliced hybrid transcripts in normal leukocytes. Virology 244, 219-229, 1998.Google Scholar
  150. 148.
    Franklin G.C., Chretien S., Hanson I.M., Rochefort H., May F.E., and Westley B.R., Expression of human sequences related to those of mouse mammary tumor virus. J Virol 62, 1203-1210, 1988.Google Scholar
  151. 149.
    Tönjes R.R., Boller K., Limbach C., Lugert R., and Kurth R., Characterization of human endogenous retrovirus type K virus-like particles generated from recombinant baculoviruses. Virology 233, 280-291, 1997.Google Scholar
  152. 150.
    Berhout B., Jebbink M., and Zsiros J., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV.K retrovirus. J Virol 73, 2365-2375, 1999.Google Scholar
  153. 151.
    Mueller-Lantzsch N., Sauter M., Weiskircher A., Kramer K., Best B., Buck M., and Grässer F., Human endogenous retroviral element K10 (HERV-K10) encodes a full-length gag homologous 73-kDA protein and a functional protease. AIDS Res Hum Retro 9, 343-350, 1993.Google Scholar
  154. 152.
    Yang J., Bogerd H.P.B., Peng S., Wiegand H., Truant R., and Cullen B.R., An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 96, 13404-13408, 1999.Google Scholar
  155. 153.
    Costas J., Characterisation and intragenomic spread of the human endogenous retrovirus family HERV.W. Mol Biol Evol 19, 526-533, 2002.Google Scholar
  156. 154.
    Yi J.M., Kim H.M., Lee W.H., and Kim H.S., Molecular cloning and phylogenetic analysis of new human endogenous retrovirus HERV-W family in cancer cells. Curr Microbiol 44, 216-220, 2002.Google Scholar
  157. 155.
    Pavlicek A., Paces J., Elleder D., and Hejnar J., Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res 12, 391-399, 2002.Google Scholar
  158. 156.
    Costas J., and Naveira H., Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol 17, 320-330, 2000.Google Scholar
  159. 157.
    Taruscio D., Floridia G., Zoraqi G.K., Mantovani A., and Falbo V., Organization and integration sites in the human genome of endogenous retroviral sequences belonging to the HERV.E family. Mamm Gen 13, 216-222, 2002.Google Scholar
  160. 158.
    Choi J.Y., Kim J.S., Lee J.M., Hyun B.H., and Kim H.S., Isolation and phylogeny of new endogenous retroviral sequences belonging to the HERV.F family. AIDS Res Hum Retro 17, 367-370, 2001.Google Scholar
  161. 159.
    Kurdyukov S.G., et al. Full-sized HERV.K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locatons and evolutionary history. Gene 273, 51-61, 2001.Google Scholar
  162. 160.
    Costas J., Evolutionary dynamics of the human endogenous retrovirus family HERV.K inferred from full-length proviral genomes. J Mol Evol 53, 237-243, 2001.Google Scholar
  163. 161.
    Jurka J., Repbase update: a database and an electronic journal of repetitive elements. Trends Gen 16, 418-420, 2000.Google Scholar
  164. 162.
    Kidwell M.G., and Lisch D.R., Transposible elements and host genome evolution. TREE 15, 95-99, 2000.Google Scholar
  165. 163.
    Sverdlov E.D., Retroviruses and primate evolution. Bioessays 22, 161-171, 2000.Google Scholar
  166. 164.
    Johnson W.E., and Coffin J.M., Constructing primate phylogenies front ancient retrovirus sequences. Proc Natl Acad Sci USA 96, 10254-10260, 1999.Google Scholar
  167. 165.
    Harvey P.H., May R.M., and Nee S., Phylogenies without fossils. Evolution 48, 523-529, 1994.Google Scholar
  168. 166.
    Nee S., Holmes E.C., May R.M., and Harvey P.H., Extinction rates can be estimated from molecular phylogenies. Phil Trans R Soc Lond B 344, 72-82, 1994.Google Scholar
  169. 167.
    Purvis A., Using interspecific phylogenies to test macro-evolutionary hypotheses, in Harvey P.H., Leigh-Brown, Maynard-Smith J., and, Nee S. (eds.), New Uses for New Phylogenies, Oxford University Press, Oxford, 1996.Google Scholar
  170. 168.
    Van der Kuyl A.C., Dekker J.T., and Goudsmit J., Primate genus Miopithecus: evidence for the existence of species and subspecies of dwarf guenons based on cellular and endogenous viral sequences. Mol Phylogenet Evol 14, 403-413, 2000.Google Scholar
  171. 169.
    Shimamura M., et al. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388, 666-670, 1997.Google Scholar
  172. 170.
    Khan A., Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses. J Virol 50, 864-871, 1984.Google Scholar
  173. 171.
    Stewart M.A., Warnock M., Wheeler A., Wilkie N., Mullins J.I., Onions D.E., and Neil J.C., Nucleotide sequences of feline leukemia viruses subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol 58, 825-834, 1986.Google Scholar
  174. 172.
    Sheets R.L., Pandey R., Jen W.-C., and Roy-Burman P., Recombinant feline leukemia virus genes detected in naturally occurring feline lympho-sarcomas. J Virol 67, 3118-3125, 1993.Google Scholar
  175. 173.
    Crittenden L.B., Fadly A.M., and Smith E.J., Effect of endogenous leukosis virus genes on response to infection with avian leukosis and reticuloendotheliosis viruses. Avian Dis 26, 279-295, 1982.Google Scholar
  176. 174.
    Crittenden L.B., Smith E.J., and Fadley A.M., Influence of endogenous viral (ev) gene expression and strain mortality of exogenous avian leukosis virus (ALV) on mortality and ALV infection and shedding in chickens. Avian Dis 28, 1037-1056, 1984.Google Scholar
  177. 175.
    Gray D.A., Jackson D.P., Percy D.H., and Morris V.L., Activation of int-1 and int-2 loci in GRf mammary tumors. Virology 154, 271-278, 1986.Google Scholar
  178. 176.
    Nusse R., The int genes in mammary tumorigenesis and in normal development. Trends Genet 4, 291-295, 1988.Google Scholar
  179. 177.
    Marchetti A., Robbins J., Campbell G., Buttitta F., Squartini F., Bistocchi M., and Callahan R., Host genetic background effect on the frequency of mouse mammary tumour-induced rearrangements of the int-1 and int-2 loci in mouse mammary tumours. J Virol 65, 4550-4554, 1991.Google Scholar
  180. 178.
    Kung H.J., Boerkoel C., and Carter T.H., Retroviral mutagenesis of cellular oncogenes: A review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 171, 1-25, 1991.Google Scholar
  181. 179.
    Datta S.K., Manny N., Andrzejewski C., Andre-Schwartz J., and Scwartz R.S., Genetic studies of autoimmunity and retrovirus expression in crosses of New Zealand black mice. J Exp Med 147, 872-881, 1978.Google Scholar
  182. 180.
    Datta S.K., Owen F.L., Womack J.E., and Riblet R.J., Analysis of recombinant inbred lines derived from “autoimmune” (NZB) and “high leukemia” (C58) strains: Independent multigenic systems control B cell hyperactivity, retrovirus expression, and autoimmunity. J Immunol 129, 1539-1544, 1982.Google Scholar
  183. 181.
    Wu J., Zhou T., He H., and Mountz J.D., Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. Intern Med 40, 80-86, 2001.Google Scholar
  184. 182.
    Coffin J.M., Retroviridae and their replication, in Fields B.N., and, Knipe D.M. (eds.), Virology, Raven Press, New York, 1990, pp. 1437-1500.Google Scholar
  185. 183.
    Coffin J.M., Reverse transcriptase and evolution, in Skalka A.M., and, S.P.G. (eds.), Reverse Transcriptase, Cold Spring Harbour Laboratory Press, New York, 1993, pp. 445-479.Google Scholar
  186. 184.
    Löwer R., The pathogenic potential of endogenous retroviruses: facts and fantasies. TIM 7, 350-356, 1999.Google Scholar
  187. 185.
    Yolken R.H., Karlsson H., Bayer T.A., Johnston-Wilson N., Yee F., and Fuller Torrey E., Retroviruses, genes and schizophrenia. Clin Neurosci Res 1, 164-169, 2001.Google Scholar
  188. 186.
    Stoye J.P., The pathogenic potential of endogenous retroviruses; a sceptical view. TIM 7, 430, 1999.Google Scholar
  189. 187.
    Kazazian H.H., An estimated frequency of endogenous insertional mutations in humans. Nature Genetics 22, 130, 1999.Google Scholar
  190. 188.
    Brookes S.M., Pandolfino Y.A., Mitchell T.J., Venables P.J.W., Shattles W.G., Clark D.A., Entwistle A., and Maini R.N., The immune response to and expression of cross-reactive retroviral gag sequences in autoimmune disease. Br J Rheumatol 31, 735-742, 1992.Google Scholar
  191. 189.
    Rasmussen H.B., Lucotte G., and Clausen J., Endogenous retroviruses and multiple sclerosis. J Neurovirol Suppl 6, 80-84, 2000.Google Scholar
  192. 190.
    Ogasawara H. et al. Quantitative analyses of messenger RNA of human endogenous retrovirus in patients with systemic lupus erythematosus. Mult Scler 1, 82-87, 1995.Google Scholar
  193. 191.
    Coffin J.M., Superantigens and endogenous retroviruses: A confluence of puzzles. Science 255, 411-413, 1992.Google Scholar
  194. 192.
    Conrad B., Weissmahr R.N., Böni J., Arcari R., Scüpbach J., and Mach B., A human endogenous retroviral superantigen as a candidate autoimmune gene in Type I diabetes. Cell 90, 303-313, 1997.Google Scholar
  195. 193.
    Lapatschek M., Dürr S., Löwer R., Magin C., Wagner H., and Miethke T., Functional analysis of the env open reading frame in human endogenous retrovirus IDDMK1,2 encoding superantigen activity. J Virol 74, 6386-6393, 2000.Google Scholar
  196. 194.
    Karlsson H., Bachmann S., Schröder J., McArthur J., Torrey E.F., and Yolken R.H., Retroviral RNA identified in the cerebospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 98, 4634-4639, 2001.Google Scholar
  197. 195.
    Hart D.J., Heath R.G., and Sautter F.R.Jr, Antiretroviral antibodies: implications for schizophrenia, schizophrenia spectrum disorders, and bipolar disorder. Biol Psychiatry 45, 704-714, 1999.Google Scholar
  198. 196.
    Bayer T., Falkai P., and Maier W., Genetic and non-genetic vulnerability factors in schizophrenia. The basis of the 'Two-hit hypothesis'. J Psych Res 33, 543-548, 1999.Google Scholar
  199. 197.
    Deb-Rinker R., Klempan T.A., Ö'Reilly R.L., Torrey E.F., and Singh S.M., Molecular characteristics of a MSRV-like sequence indentified by RDA from monozygotic twin pairs discordant for schizophrenia. Genomics 61, 133-144, 1999.Google Scholar
  200. 198.
    Towler E.M. et al. Functional characterization of the protease of human endogenous retrovirus, K10: Can it complement HIV-1 protease?. Biochemistry 37, 17137-17144, 1998.Google Scholar
  201. 199.
    Padow M., Lai L.L., Fisher R.J., Zhou Y.C., Wu X.Y., Kappes J.C., and Towler E.M., Analysis of human immunodeficiency virus type 1 containing HERV-K protease. Aids Research and Human Retroviruses 16, 1973-1980, 2000.Google Scholar
  202. 200.
    Leroi A.M., Koufopanou V., and Burt A., Cancer selection. Nat Rev Cancer 3, 226-231, 2003.Google Scholar
  203. 201.
    Weiss R.A., Griffiths D., Takeuchi Y., Patience C., and Venables P.J., Retroviruses: ancient and modern, Arch Virol Suppl 15., 171-177, 1999.Google Scholar
  204. 202.
    Blusch J.H., Patience C., and Martin U., Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9, 242-251, 2002.Google Scholar
  205. 203.
    Platt J.L., Xenotransplantation—New risks, new gains. Nature 407, 27-30, 2000.Google Scholar
  206. 204.
    Stoye J.P., and Coffin J.M., The dangers of xenotransplantation. Nat Med 1, 1995.Google Scholar
  207. 205.
    Patience C., Takeuchi Y., and Weiss R.A., Infection of human cells by an endogenous retroviruses of pigs. Nature Med 3, 282-286, 1997.Google Scholar
  208. 206.
    van der Laan L.J.W. et al. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 407, 90-94, 2000.Google Scholar
  209. 207.
    Specke V., Rubant S., and Denner J., Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. J Virol 285, 177-180, 2001.Google Scholar
  210. 208.
    Blusch J.H., Patience C., Takeuchi Y., Templin C., Roos C., Von der Helm K., Steinhoff G., and Martin U., Infection of nonhuman primate cells by pig endogenous retrovirus. J. Virol 74, 7687-7690, 2000.Google Scholar
  211. 209.
    Herring C., Cunningham D.A., Whittam A.J., Fernandez-Suarez X.M., and Langford G.A., Monitoring xenotransplant recipients for infection by PERV. Clin Biochem 34, 23-27, 2001.Google Scholar
  212. 210.
    Gao F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436-441, 1999.Google Scholar
  213. 211.
    Sharp P.M., Bailes E., Chaudhuri R.R., Rodenburg C.M., Santiago M.O., and Hahn B.H., The origins of acquired immune deficiency syndrome viruses: where and when?. Philos Trans R Soc Lond B 356, 867-876, 2001.Google Scholar
  214. 212.
    Gao F. et al. Human infection by genetically diverse SIVsm-related HIV2 in west Africa. Nature 358, 495-499, 1992.Google Scholar
  215. 213.
    Page R.D.M., and Holmes E.C.,, Blackwell, Oxford, 1998.Google Scholar
  216. 214.
    Page R.D.M., University of Chicago Press, Chicago, 2002, pp. 350.Google Scholar
  217. 215.
    Martin J., Kabat P., and Tristem M., Cospeciation and horizontal transmission rates in the murine leukamia-related retroviruses, in Page R.D.M. (ed.), Tangled Trees, University of Chicago Press, Chicago, 2002, pp. 174-194.Google Scholar
  218. 216.
    Van der Kuyl A.C., Dekker J.T., and Goudsmit J., Baboon endogenous virus evolution and ecology. Trends Microbiol 4, 455-459, 1996.Google Scholar
  219. 217.
    Mang R., Maas J., van der Kuyl A.C., and Goudsmit J., Papio cynocephalus endogenous retrovirus among old world monkeys: Evidence for coevolution and ancient cross-species transmissions. J Virol 74, 1578-1586, 2000.Google Scholar
  220. 218.
    Van der Kuyl A.C., Dekker J.T., and Gousdsmit J., Discovery of a new endogenous type C retrovirus (FcEV) in cats: evidence for RD-114 being an FcEV (Gag/Pol)/baboon endogenous BaEV (Env) recombinant. J Virol 73, 7994-8002, 1999.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Robert Gifford
    • 1
  • Michael Tristem
    • 1
  1. 1.Department of Biological SciencesImperial CollegeAscot BerkshireUK

Personalised recommendations