Virus Genes

, Volume 26, Issue 3, pp 271–282

Detailed Computational Analysis of a Comprehensive Set of Group A Rotavirus NSP4 Proteins

Article

Abstract

Rotavirus infection causes diarrhea to humans, animals and birds. The NSP4 protein of Group A rotavirus has been recognized as a viral enterotoxin. This single protein plays important roles in viral pathogenesis and morphogenesis. Domains involved in structure and biologic functions have been proposed mainly based on the SA11 strain, a prototype of group A rotavirus. NSP4 has been classified into different genotypes based on sequence homology. These analyses are based on representative strains selected but not comprehensive. In this paper, we collected all NSP4 sequences in the GenBank and performed a detailed computational analysis. Our analysis of 176 NSP4 proteins in Groups A, B and C rotaviruses confirms that the recently published avian NSP4 sequences belong to a new genotype (Mori Y., Borgan M.A., Ito N., Sugiyama M. and Minamoto N., Virus Res 89, 145–151, 2002), besides the four known NSP4 genotypes of Group A mammalian rotaviruses. Significant differences were discovered in the physicochemical properties between the avian and mammalian NSP4 proteins. In particular, lack of a highly probable coiled-coil region in the avian sequences implies a diversion of the NSP4 quaternary structure from the latter, although the secondary and tertiary structures may be similar. Fourteen amino acids are found absolutely conserved in the Group A NSP4 sequences, regardless of genotype. Of the conserved residues, two are glycosylation sites, one is in the middle of the transmembrane segment, seven span the VP4 binding domain, and five are clustered in the middle of the toxic peptide region, indicating the functional importance of the conservation.

domain enterotoxin genotype homology NSP4 phylogeny rotavirus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori Y., Borgan M.A., Ito N., Sugiyama M., and Minamoto N., Virus Res 89, 145-151, 2002.Google Scholar
  2. 2.
    Ball J.M., Tian P., Zeng C.Q., Morris A.P., and Estes M.K., Science 272, 101-104, 1996.Google Scholar
  3. 3.
    Zhang M., Zeng C.Q., Dong Y., Ball J.M., Saif L.J., Morris A.P., and Estes M.K., J Virol 72, 3666-3672, 1998.Google Scholar
  4. 4.
    Wu H., Taniguchi K., Urasawa T., and Urasawa S., J Med Virol 55, 168-176, 1998.Google Scholar
  5. 5.
    Ciarlet M., Liprandi F., Conner M.E., and Estes M.K., Arch Virol 145, 371-383, 2000.Google Scholar
  6. 6.
    Horie Y., Masamune O., and Nakagomi O., J Gen Virol 78, 2341-2346, 1997.Google Scholar
  7. 7.
    Cunliffe N.A., Woods P.A., Leite J.P., Das B.K., Ramachandran M., Bhan M.K., Hart C.A., Glass R.I., and Gentsch J.R., J Med Virol 53, 41-50, 1997.Google Scholar
  8. 8.
    Cao X.R., Akihara S., Fang Z.Y., Nakagomi O., and Ushijima H., Microbiol Immunol 43, 171-175, 1999.Google Scholar
  9. 9.
    Kirkwood C.D., Gentsch J.R., and Glass R.I., Virus Genes 19, 113-122, 1999.Google Scholar
  10. 10.
    Zhou Y., Supawadee J., Khamwan C., Tonusin S., Peerakome S., Kim B., Kaneshi K., Ueda Y., Nakaya S., Akatani K., Maneekarn N., and Ushijima H., J Med Virol 65, 619-628, 2001.Google Scholar
  11. 11.
    Griffin D.D., Nakagomi T., Hoshino Y., Nakagomi O., Kirkwood C.D., Parashar U.D., Glass R.I., and Gentsch J.R., Virology 294, 256-269, 2002.Google Scholar
  12. 12.
    Ramachandran M., Kirkwood C.D., Unicomb L., Cunliffe N.A., Ward R.L., Bhan M.K., Clark H.F., Glass R.I., and Gentsch J.R., Virology 278, 436-444, 2000.Google Scholar
  13. 13.
    Tian P., Lin S.L., Zamb T.J., and Levy O., in Kobayashi N., (ed.), Genomic Diversity and Molecular Epidemiology of Rotaviruses, Research Signpost, 2003Google Scholar
  14. 14.
    Higgins D.G., Thompson J.D., and Gibson T., J Meth Enzymol 266, 383-402, 1996.Google Scholar
  15. 15.
    Perrière G. and Gouy M., Biochimie 78, 364-369, 1996.Google Scholar
  16. 16.
    Lucas A., Meth Enzymol 266, 513-525, 1996.Google Scholar
  17. 17.
    Kneller D.G., Cohen F.E., and Langridge R.I., J Biol 214, 171-182, 1990.Google Scholar
  18. 18.
    Kirkwood C.D. and Palombo E.A., Virology 236, 258-265, 1997.Google Scholar
  19. 19.
    Horie Y., Nakagomi O., Koshimura Y., Nakagomi T., Suzuki Y., Oka T., Sasaki S., Matsuda Y., and Watanabe S., Virology 262, 398-407, 1999.Google Scholar
  20. 20.
    Ito H., Sugiyama M., Masubuchi K., Mori Y., and Minamoto N., Virus Res 75, 123-138, 2001.Google Scholar
  21. 21.
    Mohan K. V. and Atreya C.D., Virus Res 23, 231-329, 2001.Google Scholar
  22. 22.
    Horie Y., Nakagomi T., Oseto M., Masamune O., and Nakagomi O., Arch Virol 142, 1865-1872, 1997.Google Scholar
  23. 23.
    Bowman G.D., Nodelman I.M., Levy O., Lin S.L., Tian P., Zamb T.J., Udem S.A., Venkataraghavan B., and Schutt C.E., J Mol Biol 304, 861-871, 2000.Google Scholar
  24. 24.
    Bergmann C.C., Maass D., Poruchynsky M.S., Atkinson P.H., and Bellamy A.R., EMBO J 8, 1695-1703, 1989.Google Scholar
  25. 25.
    Newton K., Meyer J.C., Bellamy A.R., and Taylor J.A., J Virol 71, 9458-9465, 1997.Google Scholar
  26. 26.
    Mohan K.V., Dermody T.S., and Atreya C.D., Virology 275, 125-132, 2000.Google Scholar
  27. 27.
    Mohan K.V., and Atreya C.D., Arch Virol 145, 1789-1799. 2000.Google Scholar
  28. 28.
    Tian P., Hu Y., Schilling W.P., Lindsay D.A., Eiden J., and Estes M.K., J Virol 68, 251-257, 1994.Google Scholar
  29. 29.
    Tian P., Ottaiano A., Reilly P.A., Udem S., and Zamb T., Virus Res 66, 117-122, 2000.Google Scholar
  30. 30.
    Mori Y., Borgan M.A., Ito N., Sugiyama M., and Minamoto N., J Virol 76, 5829-5834, 2002.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Wyeth ResearchPearl RiverUSA
  2. 2.United States Department of Agriculture, Agricultural Research ServiceWRRCAlbanyUSA; Author for all corresponcence. E-mail

Personalised recommendations