Journal of Paleolimnology

, Volume 29, Issue 4, pp 475–493

Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden

  • Isabelle Larocque
  • Roland I. Hall
Article

Abstract

This study evaluates the potential of using chironomid assemblages to estimate past temperature changes by comparing chironomid-inferred temperatures to meteorological data for the last 87 years. This comparison is made using high-resolution (i.e., sub-decadally resolved) short cores of four lakes along a gradient of altitude (Lake Njulla, 999 m a.s.l., Lake 850, 850 m a.s.l., Lake Alanen Laanijavri, 365 m a.s.l. and Lake Vuoskkujavri, 348 m a.s.l.), vegetation (pine forest to alpine tundra vegetation) and temperature (mean July temperature of 12.4 to 8.1°C). Patterns of chironomid-inferred changes in mean July air temperature were highly comparable to changes in the meteorological data. Moreover, instrumental data were almost always within the specific errors of the quantitative estimates using chironomids. These results indicate that chironomids can be used as a powerful tool to reconstruct temperatures and that chironomids are sensitive enough to record temperature changes of low magnitude such as those recorded during the Holocene. Although this relationship between temperature and chironomid community is strong for the last 87 years, we cannot assume that other environmental factors such as organic matter, changes of lake water depth or oxygen availability were not more significant over longer temporal scales of the Holocene, or longer.

Chironomids Climatic change Northern Sweden Temperature estimates Transfer function Validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alverson K., Bradley R., Briffa K., Cole J., Hughes M., Larocque I. et al. 2001. The need for a global paleoclimate observing system. Science 293: 47.Google Scholar
  2. Appleby P.G. 1998. Dating recent sediments by 210Pb: problems and solutions. Proceedings 2nd NKS/EKO-1 Seminar, Helsinki 2-4th April 1997, STUK Helsinki.Google Scholar
  3. Appleby P.G. and Oldfield F. 1978. The calculation of lead 210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1-8.Google Scholar
  4. Appleby P.G., Nolan P.J., Gifford D.W., Godfrey M.J., Oldfield F., Anderson N.J. et al. 1986. 210Pb dating by low background gamma counting. Hydrobiologia 143: 21-27.Google Scholar
  5. Appleby P.G., Richardson N. and Nolan P.J. 1992. Self-absorption corrections for well-type germanium detectors. Nucl. Inst. & Methods B. 71: 228-233.Google Scholar
  6. Barnekow L. 1999. Holocene vegetation dynamics and climate changes in the Torneträsk area, northen Sweden, PhD, Quaternary Geology, Lund, 30 pp.Google Scholar
  7. Battarbee R. 2000. Paleolimnological approaches to climate change, with special regard to the biological record. Quat. Sci. Rev. 19: 107-124.Google Scholar
  8. Bennett K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155-170.Google Scholar
  9. Bigler C. and Hall R.I. 2003. Diatoms as quantitative indicators of July temperature: a century-scale validation with meteorological data from northern Sweden. Palaeogeogr. Palaeoclim. Palaeoecol. 189: 147-160.Google Scholar
  10. Bigler C., Larocque I., Peglar S.M., Birks J.H.B. and Hall R.I. 2002. Holocene environmental change: A quantitative multiproxy study from a small lake in Abisko, Swedish Lapland. The Holocene 12: 481-496.Google Scholar
  11. Bigler C., Grahn E., Larocque I., Jeziorski A. and Hall R.I. 2003. Effects of Holocene environmental change on diatom assemblages in alpine Lake Njulla (999m a.s.l)-a comparison with four small lakes along an altitudinal gradient in northern Sweden. J. Paleolim. 29: 13-29.Google Scholar
  12. Birks H.J.B. 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy D. and Brew J.S. (eds), Statistical modelling of Quaternary Science Data. Cambridge Quaternary Research Association XII, Cambridge, pp. 161-254.Google Scholar
  13. Birks H.J.B. 1998. Numerical tools in paleolimnology-progress, potentialities, and problems. J. Paleolim. 20: 307-332.Google Scholar
  14. Birks H.J.B. and Gordon A.D. 1985. The analysis of pollen stratigraphical data. Zonation. In: Birks H.J.B. and Gordon A.D. (eds), Numerical Methods in Quaternary Pollen Analysis. Academic Press, London 289 pp.Google Scholar
  15. Birks H.H., Battarbee R.W. and Birks H.J.B. 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene-a synthesis. J. Paleolim. 23: 91-144.Google Scholar
  16. Brooks S.J. 2000. Lateglacial fossil midge stratigraphies from the Swiss Alps. Palaeogeogr. Palaeoclim. Palaeoecol. 159: 261-279.Google Scholar
  17. Brooks S.J. and Birks H.J.B. 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77-89.Google Scholar
  18. Brooks S.J. and Birks H.J.B. 2000b. Chironomid-inferred lateglacial air temperatures at Whritig Bog, south-east Scotland. J. Quat. Sci. 15: 759-764.Google Scholar
  19. Brooks S.J. and Birks H.J.B. 2001. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in northwest Europe: progress and problems. Quat. Sci. Rev. 20: 1723-1741.Google Scholar
  20. Brooks S.J., Mayle F.E. and Lowe J.J. 1997. Chironomid-based Lateglacial climatic reconstruction for southeast Scotland. J. Quat. Sci. 12: 161-167.Google Scholar
  21. Clerk S., Hall R.I., Quinlan R. and Smol J.P. 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319-336.Google Scholar
  22. Hall R.I. and Smol J.P. 1999. Diatoms as indicators of lake eutrophication. In: Stoermer E.F. and Smol J.P. (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 128-168.Google Scholar
  23. Heiri O. and Lotter A.F. 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolim. 26: 343-350.Google Scholar
  24. Holmgren B. and Tjus M. 1996. Summer air temperatures and tree line dynamics at Abisko. Ecol. Bul. 45: 159-169.Google Scholar
  25. Ilyashuk B.P. and Ilyashuk E.A. 2001. Response of alpine chironomids communities (Lake Chuna, Kola Peninsula, northwest Russia) to atmospheric contamination. J. Paleolim. 25: 467-475.Google Scholar
  26. Koinig K.A., Schmidt R., Sommarunga-Wograth S., Tessadri R. and Psenner R. 1998. Climate change as the primary cause for pH shifts in a high alpine lake. Water, Air Soil Pollut. 104: 167-180.Google Scholar
  27. Korhola A., Olander H. and Blom T. 2000. Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lakes. J. Paleolim. 24: 43-54.Google Scholar
  28. Kulling O. 1964. Oversikt over norra Norrbottensfjällens kaledonberggrund. Sveriges geologiska undersökning 19, Stockholm, 166 pp.Google Scholar
  29. Laaksonen K. 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921-1950). Ann. Acad. Sci. Fennicae A III119.Google Scholar
  30. Larocque I. 2001. How many chironomi head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172: 133-142.Google Scholar
  31. Larocque I., Hall R.I. and Grahn E. 2001. Chironomids as indicators of climatic and environmental change: A 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307-322.Google Scholar
  32. Larocque I., Mazumder A., Proulx M., Lean D.R.S. and Pick F.R. 1996. Sedimentation of phytoplankton: effect of size and algal biomass. Can. J. Fish. Aquat. Sci. 53: 1133-1142.Google Scholar
  33. Legendre L. and Legendre P. 1984. Ecologie numérique. 2. La structure des données écologiques. Presses de l'Université du Québec, 335 pp. 13.Google Scholar
  34. Levesque A.J., Cwynar L.C. and Walker I.R. 1996. Richness diversity and succession of Lateglacial chironomid assemblages in New Brunswick, Canada. J. Paleolim. 16: 257-274.Google Scholar
  35. Little J.L. and Smol J.P. 2001. A chironomid-based model for inferring late-summer hypolimnetic oxygen in southeastern Ontario lakes. J. Paleolim. 26: 259-270.Google Scholar
  36. Lindegaard C. 1997. Diptera Chironomidae, non-biting midges. In: Nilsson A. (ed.), Aquatic Insects of North Europe, vol 2. Odanata-Diptera. Apollo Books, stenstrup, Denmark 440 pp.Google Scholar
  37. Lindegaard C. and Broedersen K.P. 1995. Distribution of Chironomidae (Diptera) in the river continuum. In: Cranston P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne, pp. 257-271.Google Scholar
  38. Livingstone D.M. and Lotter A.F. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181-198.Google Scholar
  39. Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I. Climate. J. Paleolim. 18: 395-420.Google Scholar
  40. Lotter A.F., Walker I.R., Brooks S.J. and Hoffmann W. 1999. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs North America. Quat. Sci. Rev. 18: 717-735.Google Scholar
  41. Lowe J.J., Birks H.H., Brooks S.J., Coope G.R., Harkness D.D., Mayle F.E. et al. 1999. The chronology of palaeoenvironmental changes during the last glacial-Holocene transition: towards an event stratigraphy for the British Isles. J. Geol. Soc. London 156: 397-410.Google Scholar
  42. Olander H., Korhola A. and Blom T. 1997. Surface sediment Chironomidae (Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45-59.Google Scholar
  43. Olander H., Birks H.J.B., Korhola A. and Blom T. 1999. An expanded calibration model for inferring summer lake-water and air temperatures from chironomid assemblages in northern Fennoscandia. The Holocene 9: 279-294.Google Scholar
  44. Oliver D.R. and Roussel M.E. 1983. The insects and arachnids of Canada, part II. The genera of larval midges of Canada. Agriculture Canada, Publication 1746, 263 pp.Google Scholar
  45. Pellatt M.G., Smith M.J., Mathewes R.W., Walker I.R. and Palmer S.L. 2000. Holocene treeline and climate change in the subalpine zone near Stoyoma Mountain, Cascade Mountains, Southwestern British Columbia. Arctic, Antartic and Alpine Res. 32: 73-83.Google Scholar
  46. Quinlan R., Smol J.P. and Hall R.I. 1998. Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. Aquat. Sci. 55: 587-596.Google Scholar
  47. Quinlan R. and Smol J.P. 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolim. 26: 327-342.Google Scholar
  48. Quinlan R. and Smol J.P. 2002. Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids. J. Paleolim. 27: 249-260.Google Scholar
  49. Renberg I. 1991. The HON-Kajak sediment corer. J. Paleolim. 6: 167-170.Google Scholar
  50. Renberg I., Korsman T. and Birks H.J.B. 1993. Prehistoric increases in the pH of acidic-sensitive Swedish lakes caused by land-use changes. Nature 361: 824-826.Google Scholar
  51. Rosén P., Segerström U., Eriksson L., Renberg I. and Birks H.J.B. 2001. Climate change during the Holocene as recorded by diatoms, chironomids, pollen and near-infrared spectroscopy (NIRS) in a sediment core from an alpine lake (Sjuodjijaure) in northern Sweden. The Holocene 11: 551-562.Google Scholar
  52. Rossaro B. 1991. Chironomids and water temperature. Aquat. Insects 13: 87-98.Google Scholar
  53. Schindler D.W., Bayley S.E., Parker B.R., Beaty K.G., Cruikshank D.R., Fee E.J. et al. 1996. The effects of climate warming on the properties of boreal lakes and streams at the Experimental Lakes Area, Northwestern Ontario. Limnol. Oceanogr. 41: 1004-1017.Google Scholar
  54. Shemesh A., Rosqvist G., Rietti-Shati M., Rubensdotter L., Bigler C., Yam R. et al. 2001. Holocene climate change in Swedish Lapland inferred from an oxygen isotope record of lacustrine biogenic silica. The Holocene 11: 447-454.Google Scholar
  55. Smith M.J., Pellat M.G., Walker I.R. and Mathewes R.W. 1998. Postglacial changes in chironomid communities and inferred climate near treeline at Mount Stoyoma, Cascade Mountains, Southwestern British Columbia, Canada. J. Paleolim. 20: 277-293.Google Scholar
  56. Smol J.P. 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. Int. Verei. Theoret. Ang. Limnol. 23: 837-844.Google Scholar
  57. Smol J.P., Walker I.R. and Leavitt P.R. 1991. Paleolimnology and hindcasting climatic trends. Int. Asso. Theoret. Appl. Limnol. 24: 1240-1246.Google Scholar
  58. Sommaruga-Wograth S., Koining K.A., Schmidt R., Sommaruga R., Tessadi R. and Psenner R. 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64-67.Google Scholar
  59. ter Braak C.J.F. and Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiol. 269/270.Google Scholar
  60. ter Braak C.J.F. and Smilauer P. 1998. Canoco reference manual and User's guide to Canoco forWindows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 352 pp.Google Scholar
  61. Walker I.R. and Mathewes R.W. 1989. Much ado about Diptera. J. Paleolim. 2: 1-14.Google Scholar
  62. Walker I.R. and McDonald G.M. 1995. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arctic and Alpine Research 27: 258-263.Google Scholar
  63. Walker I.R., Mott R.J. and Smol J.P. 1991. Allerød-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253: 1010-1012.Google Scholar
  64. Walker I.R., Smol J.P., Engström D.R. and Birks H.J.B. 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. Aquat. Sci. 48: 975-987.Google Scholar
  65. Wiederholm T. 1983. Chironomidae of the Holartic Region. Keys and Diagnoses. Part 1-Larvae. Entomol. Scand. 19.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Isabelle Larocque
    • 1
  • Roland I. Hall
    • 1
  1. 1.Abisko Naturvetenskapliga StationClimate Impacts Research CentreAbiskoSweden
  2. 2.PAGES, Bärenplatz 2BernSwitzerland

Personalised recommendations