Advertisement

Climatic Change

, Volume 59, Issue 1–2, pp 157–175 | Cite as

Glaciers and Climate in the Andes between the Equator and 30° S: What is Recorded under Extreme Environmental Conditions?

  • U. Schotterer
  • M. Grosjean
  • W. Stichler
  • P. Ginot
  • C. Kull
  • H. Bonnaveira
  • B. Francou
  • H. W. Gäggeler
  • R. Gallaire
  • G. Hoffmann
  • B. Pouyaud
  • E. Ramirez
  • M. Schwikowski
  • J. D. Taupin
Article

Abstract

Sublimation and melt disturb the environmental information obtained from ice core records in the Andes. In two case studies we demonstrate to what extent these post-depositional processes may remove major parts of the accumulated snow cover. Dark ash layers from the Tungurahua eruption changed the albedo of surface snow on Chimborazo glacier (6268 m, 1°30′ S,78°36′ W, Ecuador) between two ice core drilling campaigns and forced substantial melt. Re-distribution and washout of the chemical constituents shifted the concentration profiles obtained in December 1999 as compared to an equivalent core drilled in December 2000. The stable isotope records showed that approximately the water equivalent (weq) of an annual layer had melted, and that the percolating melt water penetrated within the firn layer to a depth of at least 16.5 m without refreezing. In the second example, from a site on the dry axis between the tropical and extra-tropical precipitation belts, significant loss of accumulated snow layers occurred by sublimation. A surface experiment at Cerro Tapado glacier (5536 m, 30°08′ S,69°55′ W, Chile) revealed that losses of ≈2 mm weq (≈5 mm snow) per day occurred during the dry period following the 1997/98 El Niño. This loss generally included the entire surface layer enriched in stable isotopes, and thus caused minimal disturbance of the isotopic signature (and hence climatic information) of the net accumulation, yet chemical constituents again experienced considerable changes in concentration. From annual layer counting and direct dating it is obvious that the major part of the accumulated ice on both glaciers is younger than 100 years; however, isotopic and chemical variations at least in the basal ice from Cerro Tapado clearly point to climate conditions different from the recent centuries. This evidence is supported by mass balance considerations derived from a glacier-climate model. The possibility of a third type of disturbance aside from sublimation and melting – in this case a significant hiatus in the environmental chronology – also deserves consideration for other icecore records from this region. Potential disruptions or discontinuities need to be carefully evaluated given the profound changes in climatic and glaciological conditions since the Last Glacial Maximum throughout Holocene times.

Keywords

Stable Isotope Ecuador Surface Snow Annual Layer Snow Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, P. A, Seltzer, G. O, Fritz, S. C., Dunbar, R., Grove, M. J., Tapia, P. M., Cross, S., Rowe, H. D., and Broda, J. P.: 2001, ‘The History of South American Tropical Precipitation for the Past 25000 Years’, Science 291,640–643.Google Scholar
  2. Davies, T. D., Brimblecombe, P., Tranter, M., Tsiouris, S., Vincent, C. E., Abrahams, P., and Blackwood, I. L.: 1987, ‘The Removal of Soluble Ions from Melting Snowpacks’, in Jones, H. G. and Orville-Thomas, W. J. (eds.), Proceedings of the NATO Advanced Study Institute on: Seasonal Snowcover Physics, Chemistry, Hydrology, Les Arcs, France, July 13–25, 1986, pp. 337–392.Google Scholar
  3. Diaz, H. F. and Graham, N. E.: 1996, ‘Recent Changes in Tropical Freezing Height and the Role of Sea Surface Temperature’, Nature 283, 152–155.Google Scholar
  4. Eichler, A., Schwikowski, M., and Gäggeler, H. W.: 2001, ‘Melt Water-Induced Relocation of Chemical Species in Alpine Firn’, Tellus 55B, 192–203.Google Scholar
  5. Escobar, F. and Aceituno, P.: 1998, ‘The ENSO Phenomenon Influence on Snow Fall in the Andean Sector of Central Chile during Winter’, Bull. Inst. Fr. Études andines, 27, 753–759.Google Scholar
  6. Francou, B., Vuille, M., Wagnon, P., Mendoza, J., and Sicart, J. E.: 2003, ‘Tropical Climate Change Recorded by a Glacier of the Central Andes during the Last Decades of the 20th Century: Chacaltaya, Bolivia, 16° S’, J. Geophys. Res., in press.Google Scholar
  7. Garcia, M., Villalba, F., Araguas-Araguas, L., and Rozanski K.: 1998, ‘The Role of Atmospheric Circulation Patterns in Controlling the Regional Distribution of Stable Isotope Contents in Precipitation: Preliminary Results from Two Transects in the Ecuadorian Andes’, Isotope Techniques in the Study of Environmental Change, Proc. Series, International Atomic Energy Agency, Vienna, IAEA-SM-349/7, pp. 127–140.Google Scholar
  8. Garreaud, R. and Aceituno, P.: 2001, ‘Interannual Rainfall Variability over the South American Altiplano’,J. Climate 14, 2779–2789.Google Scholar
  9. Grootes, P. M., Stuiver, M., Thompson, L. G., and Mosley-Thompson, E.: 1989, ‘Oxygen Isotope Changes in Tropical Ice, Quelccaya, Peru’, J. Geophys. Res. 94D1, 1187–1194.Google Scholar
  10. Ginot, P., Kull, C., Schwikowski, M., Schotterer, U., and Gäggeler, H. W.: 2001, ‘Effects of Post-Depositional Processes on Snow Composition of a Subtropical Glacier (Cerro Tapado, Chilean Andes)’, J. Geophys. Res. 108D23, 32375–32386.Google Scholar
  11. Ginot, P., Schwikowski, M., Schotterer, U., Stichler, W., Gäggeler, H. W., Francou, B., Gallaire, R., and Pouyaud, B.: 2003, ‘Climate Variability Reconstruction from Andean Glaciochemical Records’, Ann. Glaciol. 35, 443–450.Google Scholar
  12. Grosjean, M., Geyh, M., Messerli, B., Schreier, H., and Veit, H.: 1998, ‘A Late Holocene (<2600 BP) Glacial Advance in the South-Central Andes (29° S), Northern Chile’, The Holocene 8, 473–479.Google Scholar
  13. Grosjean, M., van Leeuwen, J. F. N., van der Knaap, W. O., Geyh, M., Ammann B, Tanner, W., Messerli, B., and Veit, H.: 2002, ‘A 22,000 14C yr BP Sediment and Pollen Record of Climate Change from Laguna Miscanti 23° S, Northern Chile’, Global Plan. Change 28, 35–51.Google Scholar
  14. Hall, M., Robin, C., Beate, B., Mothes, B., and Monzier, M.: 1999, ‘Tunguahua Volcano, Ecuador: Structure, Eruptive History and Hazards’, Journal of Volcanology and Geothermal Research 91, 1–21.Google Scholar
  15. Hammer, C. U.: 1980, Acidity of Polar Ice Cores in Relation to Absolute Dating, Past Volcanism, and Radioechos', J. Glaciol. 25, 359–372.Google Scholar
  16. Hastenrath, S.: 1981, The Glaciation of the Ecuadorian Andes, A:A: Balkema Publishers, Amsterdam, 159 pp.Google Scholar
  17. Hoffmann, G., Ramirez, E., Taupin, J. D., Francou, B., Ribstein, P., Delmas, R., Dürr, H., Gallaire, R., Simoes, J., Schotterer, U., Stievenard, M., and Werner, M.: 2003, ‘Coherent Isotope History of Andean Ice Cores over the Last Century’, GRL 30, 1179–1182.Google Scholar
  18. Johnsen, S. J.: 1977, ‘Stable Isotope Homogenisation of Polar Firn and Snow’, in Proceedings of Isotopes and Impurities in Snow and Ice, Grenoble 1975, IAHS Publ. 118, 210–219.Google Scholar
  19. Knüsel, S., Ginot, P., Schotterer, U., Schwikowski, M., Gäggeler, H. W., Francou, B., Petit, R., Simões, J. C., and Taupin, J. D.: 2003, ‘Dating of Two Nearby Ice Cores from the Illlimani, Bolivia’, J. Geophys. Res. 108D6, 4181, doi: 10.1029/2001JD002028.Google Scholar
  20. Kull, C. and Grosjean, M.: 2000, ‘Late Pleistocene Climate Conditions in the North Chilean Andes Drawn from a Climate-Glacier Model’,J. Glaciol. 46, 622–632.Google Scholar
  21. Kull, C., Grosjean, M., and Veit, H.: 2002, ‘Modeling Modern and Late Pleistocene Glacio-Climatological Conditions in the North Chilean Andes (29° S–30° S)’, Clim. Change 53, 359–381.Google Scholar
  22. Luckman, B. H. and Villalba, R.: 2001, ‘Assessing the Synchroneity of Glacier Fluctuations in the Western Cordillera of the Americas during the Last Millennium’, in Markgraf, V. (ed.), Interhemispheric Climate Linkages, Academic Press, San Diego, pp. 119–140.Google Scholar
  23. Ramirez, Hoffmann, G. E., Taupin, J. D., Francou, B., Ribstein, P., Cuillon, N., Landais, A., Petit, J. R., Pouyaud, B., Schotterer, U., and Stievenard, M.: 2003, ‘A New Andean Deep Ice Core from the Illimani (6350 m), Bolivia’, EPSL, in press.Google Scholar
  24. Stichler, W. and Schotterer, U.: 2000, ‘From Accumulation to Discharge: Modification of Stable Isotopes during Glacial and Postglacial Processes’, Hydrol. Process. 14, 1423–1438.Google Scholar
  25. Stichler, W., Schotterer, U., Fröhlich, K., Ginot, P., Kull, C., Gäggeler, H.W., and Pouyaud, P.: 2001, ‘The Influence of Sublimation on Stable Isotope Records Recovered from High Altitude Glaciers in the Tropical Andes’, J. Geophys. Res. 106 D19, 22613–22620.Google Scholar
  26. Talbi, A., Coudrain-Ribstein, A., Ribstein, P., and Pouyaud, B.: 1999, ‘Computation of the Rainfall on Lake Titicaca Catchment during the Holocene’, C.R. Acad. Sc. Paris 329, 197–203.Google Scholar
  27. Thompson, L. G., Davis, M. E., Mosley-Thompson, E., Sowers, T. A., Henderson, K.A., Zagoradnov, V., Lin, P.-N., Mikhalenko, V. M., Campen, R. K., Bolzan, J. F., Cole-Dai, J., and Francou, B.: 1998, A 25000-Year Tropical Climate History from Bolivian Ice Cores, Science 282, 1858–1864.Google Scholar
  28. Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., and Koci, B. R.: 1985, ‘A 1500 Year Record of Tropical Precipitation in Ice Cores from the Quelccaya Ice Cap, Peru’, Science, 229, 971–973.Google Scholar
  29. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P.-N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K.: 1995, ‘Late Glacial Stage and Holocene Tropical Ice Core Records from Huascarán, Peru’, Science 269, 47–50.Google Scholar
  30. Vuille, M.: 1996, ‘Zur raumzeitlichen Dynamik von Schneefall und Ausaperung im Bereich des südlichen Altiplano, Südamerika’, Geographica Bernensia G45, 110 pp.Google Scholar
  31. Vuille, M.: 1999, ‘Atmospheric Circulation over the Bolivian Altiplano during Dry and Wet Periods and Extreme Phases of the Southern Oscillation’, Int. J. Clim. 19, 1579–1600.Google Scholar
  32. Vuille, M., Bradley, R. S., and Keimig, F.: 2000, ‘Climatic Variability in the Andes of Ecuador and its Anomalies’, J. Climate 13, 2520–2535.Relation to Tropical Pacific and Atlantic Sea Surface TemperatureGoogle Scholar
  33. Wagnon, P., Ribstein, P., Francou, B., and Sicart, J. E.: 2001, ‘Anomalous Heat and Mass Budget of Glaciar Zongo, Bolivia, during the 1997–98 El Niño year’, J. Glaciol. 47, 21–28.Google Scholar
  34. Zweifel, B.: 2000, ‘Kernbohrung in kalten Gletschern. Glaziologische Untersuchung am Cerro Tapado (Chile), am Illimani (Bolivien) und am Fiescherhorn (Schweiz)’, Diploma Thesis, ETH Zürich, 90 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • U. Schotterer
    • 1
    • 2
  • M. Grosjean
    • 3
  • W. Stichler
    • 4
  • P. Ginot
    • 5
  • C. Kull
    • 3
  • H. Bonnaveira
    • 6
  • B. Francou
    • 5
  • H. W. Gäggeler
    • 2
    • 8
  • R. Gallaire
    • 7
  • G. Hoffmann
    • 9
  • B. Pouyaud
    • 7
  • E. Ramirez
    • 9
  • M. Schwikowski
    • 8
  • J. D. Taupin
    • 7
  1. 1.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  2. 2.Department of Chemistry and BiochemistryUniversity of BernSwitzerland
  3. 3.Institute of GeographyUniversity of BernSwitzerland
  4. 4.GSF – Institute for HydrologyNeuherbergGermany
  5. 5.Byrd Polar Research CenterColumbusU.S.A
  6. 6.Laboratoire de Glaciologie et de Géophysique de l'EnvironnementInstitute de Recherche pour le Développement (IRD)Saint-Martin d'HèresFrance
  7. 7.LimaPeru
  8. 8.Paul Scherrer InstituteVilligenSwitzerland
  9. 9.Laboratoire des Sciences du Climat et de l'EnvironnementGif sur YvetteFrance

Personalised recommendations