Advertisement

Russian Chemical Bulletin

, Volume 52, Issue 4, pp 811–816 | Cite as

New approach to stereochemical structure determination of bis-selenium-subsituted alkenes

  • V. P. Ananikov
  • I. P. Beletskaya
Article

Abstract

A new approach to determination of the stereochemical structure of bis-selenium-substituted alkenes using experimental 77Se NMR studies and B3LYP/6-311G(d) quantum-chemical calculations is developed. Joint analysis of experimental and calculated data allows assignment of signals in the 77Se NMR spectrum. The method was evaluated taking the model compounds (PhSe)HC=C(SePh)R (R = COOMe, CH2NMe2, CH2OH, Ph) as examples.

stereochemistry selenium compounds 77Se NMR spectroscopy quantum-chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catalytic Heterofunctionalization, Eds. A. Togni and H. Grützmacher, Wiley-VCH, Weinheim, 2001.Google Scholar
  2. 2.
    I. P. Beletskaya and C. Moberg, Chem. Rev., 1999, 99, 3435.Google Scholar
  3. 3.
    O. N. Temkin, G. K. Shestakov, and Yu. A. Treger, Atsetilen: Khimiya. Mekhanizmy reaktsii. Tekhnologiya [Acetylene: Chemistry. Reaction Mechanisms. Technology], Ed. O. N. Temkin, Khimiya, Moscow, 1991, 416 pp. (in Russian).Google Scholar
  4. 4.
    A. Yamamoto, Organotransition Metal Chemistry, Wiley, New York, 1986.Google Scholar
  5. 5.
    Accurate Molecular Structure: Their Determination and Importance, Eds. A. Domenicano and I. Hargittai, Oxford University Press, Oxford, 1992.Google Scholar
  6. 6.
    D. Neuhaus and M. P. Williamson, The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, New York, 1989.Google Scholar
  7. 7.
    M. P. Williamson, in Encyclopedia of Nuclear Magnetic Resonance, Eds. D. M. Grant and R. K. Harris, Wiley, Chichester, 1996, 5, p. 3262.Google Scholar
  8. 8.
    K. Wolinski, J. F. Hilton, and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.Google Scholar
  9. 9.
    R. Ditchfield, Mol. Phys., 1974, 27, 789.Google Scholar
  10. 10.
    W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley-VCH, Weinheim, 2001, 300 pp.Google Scholar
  11. 11.
    T. Helgaker, M. Jaszunski, and K. Ruud, Chem. Rev., 1999, 99, 293.Google Scholar
  12. 12.
    J. R. Cheeseman, G. W. Trucks, T. A. Keith, and M. J. Frisch, J. Chem. Phys., 1996, 104, 5497.Google Scholar
  13. 13.
    G. Rauhut, S. Puyear, K. Wolinski, and P. Pulay, J. Phys. Chem., 1996, 100, 6310.Google Scholar
  14. 14.
    W. Nakanishi and S. Hayashi, J. Phys. Chem., A, 1999, 103, 6074.Google Scholar
  15. 15.
    V. P. Ananikov, I. P. Beletskaya, G. G. Aleksandrov, and I. L. Eremenko, Organometallics, 2003, 22, 1414.Google Scholar
  16. 16.
    H. Kuniyasu, A. Ogawa, S.-I. Miyazaki, I. Ryu, N. Kambe, and N. Sonoda, J. Am. Chem. Soc., 1991, 113, 9796.Google Scholar
  17. 17.
    G. Bodenhausen, H. Kogler, and R. R. Ernst J. Magn. Reson., 1984, 58, 370.Google Scholar
  18. 18.
    R. Wagner and S. Berger, J. Magn. Reson., Ser. A, 1996, 123, 119.Google Scholar
  19. 19.
    A. Bax and R. Freeman, J. Magn. Reson., 1981, 44, 542.Google Scholar
  20. 20.
    J. Ruiz-Cabello, G. W. Vuister, C. T. W. Moonen, P. van Gelderen, J. S. Cohen, and C. M. van Zijl, J. Magn. Reson., 1992, 100, 282.Google Scholar
  21. 21.
    W. Willker, D. Leibfritz, R. Kerssebaum, and W. Bermel, Magn. Reson. Chem., 1993, 31, 287.Google Scholar
  22. 22.
    A. D. Becke, Phys. Rev., A, 1988, 38, 3098.Google Scholar
  23. 23.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B, 1988, 37 , 785.Google Scholar
  24. 24.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.Google Scholar
  25. 25.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724.Google Scholar
  26. 26.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., 1980, 72, 650.Google Scholar
  27. 27.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Rev. A.7, Gaussian, Pittsburgh (PA), 1998.Google Scholar
  28. 28.
    H. Duddeck, Prog. NMR Spectrosc., 1995, 27, 1.Google Scholar
  29. 29.
    H. Gunther, NMR Spectroscopy, John Wiley and Sons Ltd, Chichester, 1996, 581 pp.Google Scholar
  30. 30.
    M. H. Levitt, J. Magn. Reson., 1997, 126, 164.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • V. P. Ananikov
    • 1
  • I. P. Beletskaya
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State University, Leninskie GoryMoscowRussian Federation

Personalised recommendations