Space Science Reviews

, Volume 105, Issue 3–4, pp 561–599 | Cite as

The Genesis Solar Wind Concentrator

  • Jane E. Nordholt
  • Roger C. Wiens
  • Rudy A. Abeyta
  • Juan R. Baldonado
  • Donald S. Burnett
  • Patrick Casey
  • Daniel T. Everett
  • Joseph Kroesche
  • Walter L. Lockhart
  • Paul MacNeal
  • David J. McComas
  • Donald E. Mietz
  • Ronald W. MosesJr.
  • Marcia Neugebauer
  • Jane Poths
  • Daniel B. Reisenfeld
  • Steven A. Storms
  • Carlos Urdiales
Article

Abstract

The primary goal of the Genesis Mission is to collect solar wind ions and, from their analysis, establish key isotopic ratios that will help constrain models of solar nebula formation and evolution. The ratios of primary interest include 17O/16O and 18O/16O to ±0.1%, 15N/14N to ±1%, and the Li, Be, and B elemental and isotopic abundances. The required accuracies in N and O ratios cannot be achieved without concentrating the solar wind and implanting it into low-background target materials that are returned to Earth for analysis. The Genesis Concentrator is designed to concentrate the heavy ion flux from the solar wind by an average factor of at least 20 and implant it into a target of ultra-pure, well-characterized materials. High-transparency grids held at high voltages are used near the aperture to reject >90% of the protons, avoiding damage to the target. Another set of grids and applied voltages are used to accelerate and focus the remaining ions to implant into the target. The design uses an energy-independent parabolic ion mirror to focus ions onto a 6.2 cm diameter target of materials selected to contain levels of O and other elements of interest established and documented to be below 10% of the levels expected from the concentrated solar wind. To optimize the concentration of the ions, voltages are constantly adjusted based on real-time solar wind speed and temperature measurements from the Genesis ion monitor. Construction of the Concentrator required new developments in ion optics; materials; and instrument testing and handling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraclough, B. L., Dors, E. E., Abeyta, R. A., Alexander, J. F., Ameduri, F. P., Baldonado, J. R., Bame S. J., Casey P. J., Dirks, G., Everett D. T., Gosling, J. T., Grace, K. M., Guerrero, D. R., Kolar, J. D., Kroesche, J., Lockhart, W., McComas, D. J., Mietz, D. E., Roese, J., Sanders, J., Steinberg, J. T., Tokar, R. L., Urdiales, C., and Wiens, R. C.: 2003, 'The Plasma Ion and Electron Instruments for the Genesis Mission', Space Sci. Rev., this volume.Google Scholar
  2. Bochsler, P.: 2000, 'Abundances and Charge States of Particles in the Solar Wind', Rev. Geophys. 38(2), 247–266.CrossRefADSGoogle Scholar
  3. Bochsler, P. and Geiss, J.: 1989, 'Composition of the Solar Wind', in J. H. Waite, Jr., J. L. Burch, and R. L. Moore (eds.), Solar System Plasma Physics, Geophysical Monograph 54 pp. 133–141.Google Scholar
  4. Bodmer, R. and Boschler, P.: 2000, 'Influence of Coulomb Collisions on Isotopic and Elemental Fractionation in the Solar Wind Acceleration Process', J. Geophys. Res. 105(A1), 47–60.CrossRefADSGoogle Scholar
  5. Bühler, F., Eberhardt, P., Geiss, J., Miester, J., and Signer, P.: 1969, 'Apollo 11 Solar Wind Composition Experiment: First Results', Science 166, 1502–1503.ADSGoogle Scholar
  6. Bühler, F., Geiss, J., Miester, J., Eberhardt, P., Huneke, J. C., and Signer, P.: 1966, 'Trapping of the Solar Wind in Solids', Earth Planetary Sci. Lett. 1, 249–255.CrossRefADSGoogle Scholar
  7. Burnett, D. S., Barraclough, B. L., Bennett, R., Neugebauer, M., Oldham, L. P., Sasaki, C. N., Sevilla, D., Smith, N., Stansbery, E., Sweetnam, D., and Wiens, R. C.: 2003, 'The Genesis Discovery Mission: Return of solar matter to Earth', Space Sci. Rev., this volume.Google Scholar
  8. Clayton, R. N.: 1993, 'Oxygen Isotopes in Meteorites', Ann. Rev. Earth Planetary Sci. 21, 115–149.MathSciNetCrossRefADSGoogle Scholar
  9. Collier, M. R., Hamilton, D. C., Gloeckler, G., Ho, G., Bochsler, P., Bodmer, R., and Sheldon, R.: 1998, 'Oxygen 16 to Oxygen 18 Abundance Ratio in the Solar Wind Observed by WIND/MASS', J. Geophys. Res. 103, 7.CrossRefADSGoogle Scholar
  10. Geiss, J., Eberhardt, P., Signer, P., Bühler, R., and Meister, J.: 1969, 'The Solar Wind Composition Experiment', Section 8 of Apollo 11 Preliminary Science Report, NASA SP-214, pp. 183–186.Google Scholar
  11. Geiss, J., Eberhardt, P., Bühler, R., Meister, J., and Signer, P.: 1970, 'Apollo 11 and 12 Solar Wind Composition Experiments: Fluxes of He and Ne Isotopes, J. Geophys. Res. 75, 5972–5979.ADSCrossRefGoogle Scholar
  12. Geiss, J., Bühler, R., Cerutti, H., Eberhardt, P., and Filleux, Ch.: 1972, 'Solar Wind Composition Experiment', Apollo 14 Preliminary Science Report, NASA SP-315, 14–1–14–10.Google Scholar
  13. Harris, M. J., Lambert, D. L., and Goldman, A.: 1987, 'Carbon and Oxygen Isotope Ratios in the Solar Photosphere', Monthly Notices Roy. Astron. Soc. 224, 237.ADSGoogle Scholar
  14. Jurewicz, A. J. G., Burnett, D. S., Wiens, R. C., Friedmann, T. A., Hays, C. C., Hohlfelder, R. J., Nishiizumi, K., Stone, J. A., Woolum, D. S., Becker, R., Butterworth, A. L., Campbell, A. J., Ebihara, M., Franchi, I. A., Heber, V., Hohenberg, C. M., Humayun, M., McKeegan, K. D., McNamara, K., Meshik, A., Pepin, R. O., Schlutter, D., and Wieler, R.: 2003, 'Overview of the Genesis Solar-Wind Collector Materials', Space Sci. Rev., this volume.Google Scholar
  15. Kallenbach, R., Geiss, J., Ipavich, F. M., Gloeckler, G., Bochsler, P., Gliem, F., Hefti, S., Hilchenbach, M., and Hovestadt, D.: 1998, 'Isotopic Composition of Solar Wind Nitrogen: First in situ determination with the CELIAS/MTOF spectrometer on board SOHO', Astrophys. J. 507(2), L185-L188.CrossRefADSGoogle Scholar
  16. Kallenbach, R., Ipavich, F. M, Bochsler, P., Hefti, S., Hovestadt, D., Grunwaldt, H., Hilchenbach, M., Axford, W. I., Balsiger, H., and Burgi, A.: 1997, 'Isotopic Composition of Solar Wind Neon Measured by CELIAS/MTOF on board SOHO', J. Geophys. Res. Space Phys. 102, 26895–26904.CrossRefADSGoogle Scholar
  17. McComas, D. J. et al.: 1998, 'Solar Wind Concentrator', in R. F. Pfaff, J. E. Borvsky, and D. T. Young (eds.), Measurement Techniques for Space Plasmas, AGU Monograph 102, pp. 195–200.Google Scholar
  18. Neugebauer, M., Steinberg J. T., Tokar R. L., Barraclough B. L., Dors E. E., Wiens R. C., Gingerich D. E., Luckey D., and Whiteaker D. B.: 2003, 'Genesis On-Board Determination of the Solar Wind Flow Regime', Space Sci. Rev., this volume.Google Scholar
  19. Pepin, R. O.: 1991, 'On The Origin And Early Evolution Of Terrestrial Planet Atmospheres And Meteoritic Volatiles', Icarus 92(1), 2–79.CrossRefADSGoogle Scholar
  20. Signer, P., Eberhardt, P., and Geiss, J.: 1965, 'Possible Determination of the Solar Wind Composition', J. Geophys. Res 70(9), 2243–2244.ADSGoogle Scholar
  21. Wiens, R. C., Huss, G. R., and Burnett, D. S.: 1999, 'The Solar Oxygen-Isotopic Composition: Predictions and Implications for Solar Nebula Processes', Meteorol. Planetary Sci. 34, 99.ADSCrossRefGoogle Scholar
  22. Wiens, R. C., Neugebauer, M., Reisenfeld, D. B., Moses, R. W., Jr., and Nordholt, J. E., Burnett, D. S.: 2003, 'Genesis Solar Wind Concentrator: Computer Simulations of Performance under Solar Wind Conditions', Space Sci. Rev., this volume.Google Scholar
  23. Wimmer-Schweingruber, R. F., Bochsler, P., and Gloeckler G.: 2001, 'The Isotopic Composition of Oxygen in the Fast Solar Wind: ACE/SWIMS', Geophys. Res. Lett. 28(14), 2763–2766.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jane E. Nordholt
    • 1
  • Roger C. Wiens
    • 1
  • Rudy A. Abeyta
    • 1
  • Juan R. Baldonado
    • 1
  • Donald S. Burnett
    • 2
  • Patrick Casey
    • 3
  • Daniel T. Everett
    • 1
  • Joseph Kroesche
    • 4
  • Walter L. Lockhart
    • 5
  • Paul MacNeal
    • 6
  • David J. McComas
    • 3
  • Donald E. Mietz
    • 1
  • Ronald W. MosesJr.
    • 1
  • Marcia Neugebauer
    • 6
  • Jane Poths
    • 1
  • Daniel B. Reisenfeld
    • 1
  • Steven A. Storms
    • 1
  • Carlos Urdiales
    • 3
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Southwest Research InstituteSan AntonioUSA
  4. 4.Mobius SystemsSan AntonioUSA
  5. 5.Creative CircuitrySan AntonioUSA
  6. 6.Jet Propulsion LaboratoryPadadenaUSA

Personalised recommendations