, Volume 491, Issue 1–3, pp 241–254 | Cite as

Colony formation in Scenedesmus: a literature overview and further steps towards the chemical characterisation of the Daphnia kairomone

  • Frédérique L. van Holthoon
  • Teris A. van Beek
  • Miquel Lürling
  • Ellen Van Donk
  • Aede De Groot


Semiochemicals play an important role in interactions between living organisms in aquatic environments. Although the presence of chemical cues is confirmed in more and more systems, the chemical structures remain predominantly elusive. To create more accurate prey–predator interaction models and to advance the research on chemical communication, it is essential to identify these compounds. A literature overview of cues involving Daphnia (either as producer or receiver) is given and the progress towards their isolation and structure elucidation is described. Most of the research so far has concentrated on the elucidation of kairomones produced by predators of Daphnia (especially Chaoborus and several species of fish). Although some progress has been made, these cues have not been isolated and identified yet. Additionally new results on the isolation and identification of the kairomone responsible for the colony formation in Scenedesmus using differential diagnosis and bioassay-directed fractionation of Daphnia exudates are presented. The importance of suitable and well performing bioassays herein cannot be underestimated. Some preliminary results with solid-phase extraction with C18 proved to be reproducible for extracting the active compound from Daphnia water, although it was not possible to get the biological activity into a single fraction. The cue was not extractable with an anion exchanger (SAX). Subjecting the extract to HPLC led to one active fraction.

semiochemicals Scenedesmus Daphnia Solid-Phase Extraction chemical communication bioassay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boland, W., 1995. The chemistry of gamete attraction: chemical structures, biosynthesis, and (a)biotic degradation of algal pheromones. Proc. natn. Acad. Sci. U.S.A. 92: 37-43.Google Scholar
  2. Boriss, H., M. Boersma & K. H. Wiltshire, 1999. Trimethylamine induces migration of waterfleas. Nature 398: 382.Google Scholar
  3. Burks, R. L., E. Jeppesen & D. M. Lodge, 2000. Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos 88: 139-147.Google Scholar
  4. Clare, A. S., D. Rittschof, D. J. Gerhart, I. R. Hooper & J. Bonaventura, 1999. Antisettlement and narcotic action of analogues of diterpene marine natural product antifoulants from octocorals. Mar. Biotech. 1: 427-436.Google Scholar
  5. Dodson, S. I., 1988. The ecological role of chemical stimuli for the zooplankton: predator-avoidance behavior in Daphnia. Limnol. Oceanogr. 33: 1431-1439.Google Scholar
  6. Dodson, S. I., 1989a. Predator-induced reaction norms: cyclic changes in shape and size can be protective. Bioscience 39: 447-452.Google Scholar
  7. Dodson, S. I., 1989b. The ecological role of chemical stimuli for the zooplankton: predator-induced morphology in Daphnia. Oecologia 78: 361-367.Google Scholar
  8. Dowell Kearns, K. & M. D. Hunter, 2000. Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Envir. Microbiol. 2: 291-297.Google Scholar
  9. Francke, W. & R. Gaterman, 2001. Pers. Comm.Google Scholar
  10. Grant, J. W. G. & I. A. E. Bayly, 1981. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26: 201-218.Google Scholar
  11. Gross, E. M., H. Meyer & G. Schilling, 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41: 133-138.Google Scholar
  12. Hardege, J. D., 1999. Nereidid polychaetes as model organisms for marine chemical ecology. Hydrobiologia 402: 145-161.Google Scholar
  13. Hebert, P. D. N. & P. M. Grewe, 1985. Chaoborus-induced shifts in the morphology of Daphnia ambigua. Limnol. Oceanogr. 30: 1291-1297.Google Scholar
  14. Kaler, V. L., O. P. Bulko, V. N. Reshetnikov & G. A. Galkovskaya, 2000. Changes in the morphostructure of Scenedesmus acutus and culture growth rate induced by the exudate of primary consumer Daphnia magna. Russ. J. Plant Phys. 47: 698-705.Google Scholar
  15. Kusch, J., 1999. Self-recognition as the original function of an amoeban defense-inducing kairomone. Ecology 80: 715-720.Google Scholar
  16. Kusch, J. & K. Heckmann, 1992. Isolation of the Lembadion-factor, a morphogenetically active signal, that induces Euplotes cells to 254 change from their ovoid form into a larger lateral winged morph. Dev. Genet. 13: 241-246.Google Scholar
  17. Lampert, W., K. O. Rothhaupt & E. von Elert, 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39: 1543-1550.Google Scholar
  18. Larsson, P. & S. I. Dodson, 1993. Chemical communication in planktonic animals. Arch. Hydrobiol. 129: 129-155.Google Scholar
  19. Larsson, P. & M. R. Miracle, 1997. The future of cladoceran research. Hydrobiologia 360: 287-289.Google Scholar
  20. Lass, S., M. Boersma, K. H. Wiltshire, P. Spaak & H. Boriss, 2001. Does trimethylamine induce life-history reactions in Daphnia? Hydrobiologia 442: 199-206.Google Scholar
  21. Laurence, B. R. & J. A. Pickett, 1982. Erythro-6-acetoxy-5-hexadecanolide, the major component of a mosquito oviposition attractant pheromone. J. chem. Soc. Chem. Comm. 59-60.Google Scholar
  22. Loose, C. J., E. von Elert & P. Dawidowicz, 1993. Chemicallyinduced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329-337.Google Scholar
  23. Lürling, M., 1999. The smell of water: grazer-induced colony formation in Scenedesmus. Ph.D. Thesis. Wageningen Agricultural University.Google Scholar
  24. Lürling, M. & W. Beekman, 1999. Grazer-induced defenses in Scenedesmus (Chlorococcales; Chlorophyceae); coenobium and spine formation. Phycologia 38: 368-376.Google Scholar
  25. Lürling, M. & E. van Donk, 1996. Zooplankton-induced unicellcolony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia 108: 432-437.Google Scholar
  26. Lürling, M. & E. van Donk, 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr. 42: 783-788.Google Scholar
  27. Lürling, M. & E. van Donk, 2000. Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88: 111-118.Google Scholar
  28. Lürling, M. & E. von Elert, 2001. Colony formation in Scenedesmus: no contribution of urea in induction by a lipophylic Daphnia exudate. Limnol. Oceanogr. 46: 1809-1813.Google Scholar
  29. Parejko, K. & S. I. Dodson, 1990. Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiologia 198: 51-59.Google Scholar
  30. Paul, V. J. & K. L. van Alstyne, 1992. Activation of chemical defenses in the topical green algae Halimeda spp. J. exp. mar. Biol. Ecol. 160: 191-203.Google Scholar
  31. Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for limnetic species of Daphnia. Int. Rev. Ges. Hydrobiol. 58: 569-576.Google Scholar
  32. Peruzzi, M., G. Bartolucci & F. Cioni, 2000. Determination of phenoxyalkanoic acids and other herbicides at the ng/ml level in water by solid-phase extraction with poly(divinylbenzeneco-N-vinylpyrrolidone) sorbent and high-performance liquid chromatography-diode-array detection. J. Chromatogr. A 867: 169-175.Google Scholar
  33. Peters-Regehr, T., J. Kusch & K. Heckmann, 1997.Primary structure and origin of a predator released protein that induces defensive morphological changes in Euplotes. Eur. J. Protistol. 33: 389-395.Google Scholar
  34. Phillips, T. W., 1997. Semiochemicals of stored-product insects: research and applications. J. stored Prod. Res. 33: 17-30.Google Scholar
  35. Pohnert, G. & E. von Elert, 2000. No ecological relevance of trimethylamine in fish-Daphnia interactions. Limnol. Oceanogr. 45: 1153-1156.Google Scholar
  36. Ram, J. L., C. T. Müller, M. Beckmann & J. D. Hardege, 1999. The spawning pheromone cysteine-glutathione disulfide ('nereithione') arouses a multicomponent nuptial behavior and electrophysiological activity in Nereis succinea males. FASEB J. 31: 945-952.Google Scholar
  37. Riessen, H. P., 1999. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Can. J. Fish. aquat. Sci. 56: 2487-2494.Google Scholar
  38. Ringelberg, J. & E. Van Gool, 1998. Do bacteria, not fish, produce 'fish kairomone'? J. Plankton Res. 20: 1847-1852.Google Scholar
  39. Thurman, E. M. & M. S. Mills, 1998. Solid-Phase Extraction: Principles and Practice. Wiley & Sons, Inc, New York: 344 pp.Google Scholar
  40. Tollrian, R. & E. von Elert, 1994. Enrichment and purification of Chaoborus kairomone from water: further steps towards its chemical characterization. Limnol. Oceanogr. 39: 788-796.Google Scholar
  41. van Gool, E. & J. Ringelberg, 1996. Daphnids respond to algaeassociated odours. J. Plankton Res. 18: 197-202.Google Scholar
  42. van Horne, K. C., 1985. Sorbent Extraction Technology. Analytichem International, Harbor City: 124 pp.Google Scholar
  43. von Elert, E., 2000. Fatty acids released by Daphnia: do they induce colony formation in Scenedesmus acutus? Verh. int. Ver. theor. angew. Limnol. 27: 2128-2131.Google Scholar
  44. von Elert, E. & A. Franck, 1999. Colony formation in Scenedesmus: grazer-mediated release and chemical features of the infochemical. J. Plankton Res. 21: 789-804.Google Scholar
  45. von Elert, E. & C. J. Loose, 1996. Predator-induced diel vertical migration in Daphnia: enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22: 885-895.Google Scholar
  46. von Elert, E. & G. Pohnert, 2000. Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88: 119-128.Google Scholar
  47. Wiltshire, K. H. & W. Lampert, 1999. Urea excretion by Daphnia: a colony-inducing factor in Scenedesmus? Limnol. Oceanogr. 44: 1894-1903.Google Scholar
  48. Wolfe, G. V., M. Steinke & G. O. Kirst, 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature 387: 894- 897.Google Scholar
  49. Yasumoto, M., T. Ooi, K. Takenori & F. Kasai, 2000. Characterization of Daphnia kairomone inducing morphological change of green alga Actinastrum sp. Tennen Yuki Kagobutsu Toronkai Keon Yoshishu 42: 385-390.Google Scholar
  50. Zeeck, E., T. Harder & M. Beckmann, 1998a. Inosine, L-glutamic acid and L-glutamine as components of a sex pheromone complex of the marine polychaete Nereis succinea (Annelida: Polychaeta). Chemoecology 8: 77-84.Google Scholar
  51. Zeeck, E., C. T. Müller, M. Beckmann, J. D. Hardege, U. Papke, V. Sinnwell, F. C. Schroeder & W. Francke, 1998b. Cysteineglutathione disulfide, the sperm-release pheromone of the marine polychaete Nereis succinea (Annelida: Polychaeta). Chemoecology 8: 33-38.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Frédérique L. van Holthoon
    • 1
  • Teris A. van Beek
    • 1
  • Miquel Lürling
    • 2
  • Ellen Van Donk
    • 3
  • Aede De Groot
    • 1
  1. 1.Laboratory of Organic Chemistry, Phytochemical sectionWageningen UniversityWageningenThe Netherlands
  2. 2.Aquatic Ecology and Water Quality Management GroupWageningen UniversityWageningenThe Netherlands
  3. 3.NIOO-Centre for LimnologyNieuwersluisThe Netherlands

Personalised recommendations