Hydrobiologia

, Volume 491, Issue 1–3, pp 9–18

Why plankton communities have no equilibrium: solutions to the paradox

  • Marten Scheffer
  • Sergio Rinaldi
  • Jef Huisman
  • Franz J. Weissing
Article

Abstract

In a classical paper, Hutchinson (1961) argued that the large number of species in most plankton communities is remarkable in view of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. Few ideas in aquatic ecology have evoked more research than this `paradox of the plankton'. This review is an effort to put the main solutions to the paradox that have been proposed over the years into perspective. Hutchinson himself already suggested that the explanation could be that plankton communities are not in equilibrium at all due to weather-driven fluctuations. Subsequent research confirmed that such externally imposed variability can allow many species to coexist. Another important point is that in practice the homogeneous well-mixed conditions assumed in the competitive exclusion principle hardly exist. Even the open ocean, for instance, has a spatial complexity resulting from meso-scale vortices and fronts that can facilitate coexistence of species. Perhaps most excitingly, theoretical work on species interactions has given a counter-intuitive new dimension to the understanding of diversity. Various competition and predation models suggest that even in homogeneous and constant environments plankton will never settle to equilibrium. Instead, interactions between multiple species may give rise to oscillations and chaos, with a continuous wax and wane of species within the community. Long-term laboratory experiments support this view. This chaotic behavior implies among other things that plankton dynamics are intrinsically unpredictable in the long run when viewed in detail. Nonetheless, on a higher aggregation level, indicators such as total algal biomass may show quite regular patterns.

biodiversity chaos competition phytoplankton predation zooplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, V. V. & A. N. Kornilovsky, 1985. Ecosystems stochasticity model. Ecol. Model. 28: 217-230.Google Scholar
  2. Armstrong, R. A. & R. McGehee, 1980. Competitive exclusion. Am. Nat. 115: 151-170.Google Scholar
  3. Arneodo, A., P. Coullet, J. Peyraud & C. Tresser, 1982. Strange attractors in Volterra equations for species in competition. J. Math. Biol. 14: 153-157.PubMedGoogle Scholar
  4. Bjørnstad, O. N. & B. T. Grenfell, 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293: 638-643.PubMedGoogle Scholar
  5. Boersma, M., 1995. Competition in natural populations of Daphnia. Oecologia 103: 309-318.Google Scholar
  6. Bracco, A., A. Provenzale & I. Scheuring, 2000. Mesoscale vortices and the paradox of the plankton. Proc. r. Soc. Lond. B 267: 1795- 1800.PubMedGoogle Scholar
  7. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28-35.Google Scholar
  8. Buss, L. W. & J. B. C. Jackson, 1979. Competitive networks: nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113: 223-234.Google Scholar
  9. Cottingham, K. L., 1996. Phytoplankton responses to whole-lake manipulations of nutrients and food webs. Thesis, University of Wisconsin.Google Scholar
  10. DeFeo, O. & S. Rinaldi, 1998. Singular homoclinic bifurcations in tritrophic food chains. Math. Biosci. 148: 7-20.PubMedGoogle Scholar
  11. DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates of Daphnia and Bosmina. Limnol. Oceanogr. 27: 518-527.Google Scholar
  12. Doveri, F., M. Scheffer, S. Rinaldi, S. Muratori & Y. A. Kuznetsov, 1993. Seasonality and chaos in a plankton-fish model. Theor. Popul. Biol. 43: 159-183.Google Scholar
  13. Ellner, S. & P. Turchin, 1995. Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Nat. 145: 343-375.Google Scholar
  14. Fernández, A., S. Huang, S. Seston, J. Xing, R. Hickey, C. Criddle & J. Tiedje, 1999. How stable is stable? Function versus community composition. Appl. Environ. Microbiol. 65: 3697-3704.PubMedGoogle Scholar
  15. Flöder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnol. Oceanogr. 44: 1114-1119.Google Scholar
  16. Gilpin, M. E., 1979. Spiral chaos in a predator-prey model. Am. Nat. 113: 306-308.Google Scholar
  17. Gragnani, A., M. Scheffer & S. Rinaldi, 1999. Top-down control of cyanobacteria: a theoretical analysis. Am. Nat. 153: 59-72.Google Scholar
  18. Grover, J. P., 1989. Effects of Si:P supply ratio, supply variability, and selective grazing in the plankton: an experiment with a natural algal and protistan assemblage. Limnol. Oceanogr. 34: 349-367.Google Scholar
  19. Gulati, R. D., E. H. R. R. Lammens, M. L. Meijer & E. van Donk (eds), 1990. Biomanipulation, Tool for Water Management. Kluwer Academic Publishers, Dordrecht, The Netherlands: 628 pp.Google Scholar
  20. Gulati, R. D., A. L. Ooms-Wilms, O. F. R. van Tongeren, G. Postema & K. Siewertsen, 1992. The dynamics and role of limnetic zooplankton in Loosdrecht Lakes (The Netherlands). Hydrobiologia 233: 69-86.Google Scholar
  21. Hastings, A. & T. Powell, 1991. Chaos in a three-species food chain. Ecology 72: 896-903.Google Scholar
  22. Hastings, A., C. L. Hom, S. Ellner, P. Turchin & H. C. J. Godfray, 1993. Chaos in ecology - is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24: 1-33.Google Scholar
  23. Heerkloss, R. & G. Klinkenberg, 1998. A long-term series of a planktonic foodweb: a case of chaotic dynamics. Verh. int. Ver. Limnol. 26: 1952-1956.Google Scholar
  24. Hogeweg, P. & B. Hesper, 1978. Interactive instructions on population interactions. Comp. Biol. Med. 8: 319-327.Google Scholar
  25. Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton: 375 pp.Google Scholar
  26. Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407-410.Google Scholar
  27. Huisman, J. & F. J. Weissing, 2001a. Fundamental unpredictability in multispecies competition. Am. Nat. 157: 488-494.Google Scholar
  28. Huisman, J. & F. J. Weissing, 2001b. Biological conditions for oscillations and chaos generated by multispecies competition. Ecology 82: 2682-2695.Google Scholar
  29. Huisman, J. & F. J. Weissing, 2002. Oscillations and chaos generated by competition for interactively essential resources. Ecol. Res. 17: 175-181.Google Scholar
  30. Huisman, J., A. M. Johansson, E. O. Folmer & F. J. Weissing, 2001. Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4: 408-411.Google Scholar
  31. Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211-222.Google Scholar
  32. Hutchinson, G. E., 1941. Ecological aspects of succession in natural populations. Am. Nat. 75: 406-418.Google Scholar
  33. Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137-145.Google Scholar
  34. Jackson, J. & L. Buss, 1975. Allelopathy and spatial competition among coral reef invertebrates. Proc. natl. Acad. Sci. U.S.A. 72: 5160-5163.Google Scholar
  35. Kersting, K., 1985. Properties of an aquatic micro-ecosystem. V. Ten years of observations of the prototype. Verh. int. Ver. Limnol. 22: 3040-3045.Google Scholar
  36. Kuznetsov, Y. A. & S. Rinaldi, 1996. Remarks on food chain dynamics. Math. Biosci. 134: 1-33.PubMedGoogle Scholar
  37. Litchman, E., 1998. Population and community responses of phytoplankton to fluctuating light. Oecologia 117: 247-257.Google Scholar
  38. Lloyd, A. L. & D. Lloyd, 1995. Chaos: its significance and detection in biology. Biol. Rhythm Res. 26: 233-252.Google Scholar
  39. Lorenz, E. N., 1964. The problem of deducing the climate from the governing equations. Tellus 16: 1-11.Google Scholar
  40. McCauley, E. & W. W. Murdoch, 1987. Cyclic and stable populations: plankton as a paradigm. Am. Nat. 129: 97-121.Google Scholar
  41. McGrady-Steed, J., P. M. Harris & P. J. Morin, 1997. Biodiversity regulates ecosystem predictability. Nature 390: 162-165.Google Scholar
  42. Naeem, S. & S. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390: 507-509.Google Scholar
  43. Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands: 199 pp.Google Scholar
  44. Remmert, H. (ed.), 1991. The Mosaic-Cycle Concept of Ecosystems. Springer Verlag, Berlin.Google Scholar
  45. Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157-171.Google Scholar
  46. Reynolds, C. S., J. Padisák & U. Sommer, 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: a synthesis. Hydrobiologia 249: 183-188.Google Scholar
  47. Richerson, P. J., R. Armstrong & C. R. Goldman, 1970. Contemporaneous disequilibrium: a new hypothesis to explain the paradox of the plankton. Proc. natl. Acad. Sci. U.S.A. 67: 1710-1714.PubMedGoogle Scholar
  48. Rinaldi, S. & S. Muratori, 1993. Conditioned chaos in seasonally perturbed predator-prey models. Ecol. Model. 69: 79-97.Google Scholar
  49. Rinaldi, S., S. Muratori & Y. Kuznetsov, 1993. Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55: 15-35.Google Scholar
  50. Ringelberg, J., 1977. Properties of an aquatic micro ecosystem II. Steady-state phenomena in the autotrophic subsystem. Helgolander wiss. Meeresunters. 30: 134-143.Google Scholar
  51. Rogers, T. D., 1981. Chaos in systems in population biology. Progr. Theor. Biol. 6: 91-146.Google Scholar
  52. Rothhaupt, K. O., 1988. Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333: 660-662.Google Scholar
  53. Rothhaupt, K. O., 1996. Laboratory experiments with a mixotrophic chrysophyte and obligately phagotrophic and phototrophic competitors. Ecology 77: 716-724.Google Scholar
  54. Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics: and if so, should we bother? J. Plankton Res. 13: 1291-1305.Google Scholar
  55. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997a. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272-282.Google Scholar
  56. Scheffer, M., S. Rinaldi, Y. A. Kuznetsov & E. H. van Nes, 1997b. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80: 519-532.Google Scholar
  57. Scheffer, M., D. Straile, E. H. van Nes & H. Hosper, 2001. Climatic warming causes regime shifts in lake foodwebs. Limnol. Oceanogr. 46: 1780-1783.Google Scholar
  58. Smale, S., 1976. On the differential equations of species in competition. J. Math. Biol. 3: 5-7.PubMedGoogle Scholar
  59. Sommer, U., 1985. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30: 335-346.Google Scholar
  60. Sommer, U., 1986. Nitrate-and silicate-competition among Antarctic phytoplankton. Mar. Biol. 91: 345-351.Google Scholar
  61. Sommer, U., 1991. Phytoplankton: directional succession and forced cycles. In Remmert, H. (ed), The Mosaic-Cycle Concept of Ecosystem. Springer Verlag, Berlin: 132-146.Google Scholar
  62. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.Google Scholar
  63. Stone, L., G. Landan & R. M. May, 1996. Detecting time”s arrow: a method for identifying nonlinearity and deterministic chaos in time-series data. Proc. r. Soc. Lond. B 263: 1509-1513.Google Scholar
  64. Sugihara, G. & R. M. May, 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734-741.PubMedGoogle Scholar
  65. Takeuchi, Y. & N. Adachi, 1983. Existence and bifurcation of stable equilibrium in two-prey, one-predator communities. Bull. Math. Biol. 45: 877-900.Google Scholar
  66. Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338-348.Google Scholar
  67. Tilman, D., 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology 62: 802-815.Google Scholar
  68. Tilman, D., 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350-363.Google Scholar
  69. Turchin, P. & A. D. Taylor, 1992. Complex dynamics in ecological time series. Ecology 73: 289-305.Google Scholar
  70. Vance, R. R., 1978. Predation and resource partitioning in one predator-two prey model communities. Am. Nat. 112: 797-813.Google Scholar
  71. VanBuskirk, R. & C. Jeffries, 1985. Observation of chaotic dynamics of coupled nonlinear oscillators. Phys. Rev. A 31: 3332-3357.PubMedGoogle Scholar
  72. Van Gemerden, H., 1974. Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb. Ecol. 1: 104-119.Google Scholar
  73. VanderMeer, J., 1993. Loose coupling of predator-prey cycles: entrainment, chaos, and intermittency in the classic MacArthur consumer-resource equations. Am. Nat. 141: 687-716.Google Scholar
  74. Wilson, H. B. & D. A. Rand, 1993. Detecting chaos in a noisy time series. Proc. r. Soc. Lond. B 253: 239-244.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Marten Scheffer
    • 1
  • Sergio Rinaldi
    • 2
  • Jef Huisman
    • 3
  • Franz J. Weissing
    • 4
  1. 1.Aquatic Ecology and Water Quality Management Group, Department of Environmental SciencesWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.CIRITA, Politecnico di MilanoMilanoItaly
  3. 3.Aquatic Microbiology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of GeneticsUniversity of GroningenHarenThe Netherlands

Personalised recommendations