Advertisement

Instruments and Experimental Techniques

, Volume 46, Issue 3, pp 287–299 | Cite as

Fields of Application of Aerogels (Review)

  • Yu. K. Akimov
Article

Abstract

The properties of silica aerogel and other types of aerogels are described. Basic information about their manufacture processes is presented. The application of aerogels in optics, nuclear physics, low-temperature physics, laser experiments, space investigations, microelectronics, electrical engineering, and acoustics as highly efficient heat insulators and trapping media for the analysis or purification of gas or liquid flows that pass through them is considered.

Keywords

Physical Chemistry Purification Manufacture Process Acoustics Space Investigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kistler, S.S., Nature (London), 1931, vol. 127, p. 741.Google Scholar
  2. 2.
    Schaefer, D W., Rev. Phys. Appl., 1989, vol. 24, pp. 4-121.Google Scholar
  3. 3.
    Hrubesh, L.W. and Poco, J.F., J. Non-Cryst. Solids, 1995, vol. 188, p. 46.Google Scholar
  4. 4.
    Filippov, A.I., Filin, S.V., Fursov, A.P., et al., Report of JINR, Dubna, 1996, no. R13-96-165.Google Scholar
  5. 5.
    Akimov, Yu.K., Zrelov, V.P., Moiseenko, A.S., et al., Pis'ma Fiz. Elem. Chastits At. Yadra, 2000, no. 1(98), p. 48.Google Scholar
  6. 6.
    Rasmussen, I.L., Rev. Phys. Appl., 1989, vol. 24, pp. 4-221.Google Scholar
  7. 7.
    Zimmermann, A., Gross, J., and Fricke, J., J. Non-Cryst. Solids, 1995, vol. 186, p. 238.Google Scholar
  8. 8.
    Tilotson, T.M. and Hrubesh, L.W., J. Non-Cryst. Solids, 1992, vol. 145, p. 44.Google Scholar
  9. 9.
    Adachi, I., Sumiyoshi, T., Hayashi, K., et al., Nucl. Instrum. Methods Phys. Res. A, 1995, vol. 355, p. 390.Google Scholar
  10. 10.
    Schwertfeger, F., Glaubitt, W., and Schubert, U., J. Non-Cryst. Solids, 1992, vol. 145, p. 85.Google Scholar
  11. 11.
    Hoechst, A.G., Schmidt, M., and Schwertfeger, F., J.Non-Cryst. Solids, 1998, vol. 225, p. 365.Google Scholar
  12. 12.
    Smith, D.M., Stein, D., Anderson, J.M., and Ackerman, W., J. Non-Cryst. Solids, 1995, vol. 186, p. 104.Google Scholar
  13. 13.
    Schwerfeger, F., Frank, D., and Schmidt, M., J. Non-Cryst. Solids, 1998, vol. 225, p. 254.Google Scholar
  14. 14.
    Burns, G.T., Deng, Q., Field, R., et al., Chem. Mater., 1999, vol. 11, p. 1275.Google Scholar
  15. 15.
    Moner-Girona, M., Martinez, E., Roig, A., et al., J.Non-Cryst. Phys., 2001, vol. 285, p. 244.Google Scholar
  16. 16.
    Kun-Hong Lee, Sun-Young Kim, and Ki-Poong Yoo, J.Non-Cryst. Solids, 1995, vol. 186, p. 18.Google Scholar
  17. 17.
    Pekala, R.M. and Kong, F.M., Rev. Phys. Appl., 1989, vol. 24, pp. 4-33.Google Scholar
  18. 18.
    Pekala, R.W., Alviso, C.T., Kong, F.M., and Hulsey, S.S., J. Non-Cryst. Solids, 1992, vol. 145, p. 90.Google Scholar
  19. 19.
    Cantin, M., Casse, M., Koch, L., et al., Nucl. Instrum. Methods Phys. Res. A, 1974, vol. 118, p. 177.Google Scholar
  20. 20.
    Bonrdinaud, M, Chese, J.B., Thevenin J.C., et al., Nucl. Instrum. Methods Phys. Res. A, 1976, vol. 136, p. 99.Google Scholar
  21. 21.
    Benot, M., Carlson, P.S., Tavernier, S., et al., Nucl. Instrum. Methods Phys. Res. A, 1976, vol. 154, p. 99.Google Scholar
  22. 22.
    Henning, S. and Svensson, L., Phys. Scr., 1981, vol. 23, p. 697.Google Scholar
  23. 23.
    DeBrison, J.P., Caillet, A., Cheze, J.B., et al., Nucl. Instrum. Methods Phys. Res. A, 1981, vol. 179, p. 61.Google Scholar
  24. 24.
    Arnault, C., Heusse, P., Barberis, P.L., et al., Nucl. Instrum. Methods Phys. Res. A, 1980, vol. 177, p. 337.Google Scholar
  25. 25.
    Carlson, P., Johansson, K.E., Kesteman, S., et al., Nucl. Instrum. Methods Phys. Res. A, 1982, vol. 192, p. 209.Google Scholar
  26. 26.
    Poelz, G. and Riethmuller, R., Nucl. Instrum. Methods Phys. Res. A, 1982, vol. 195, p. 491.Google Scholar
  27. 27.
    Maurer, R., Kobschall, G., Rohrich, K., et al., Nucl. Instrum. Methods Phys. Res. A, 1984, vol. 224, p. 110.Google Scholar
  28. 28.
    Fernandez, S., Johansson, K.E., Shouten, M., et al., Nucl. Instrum. Methods Phys. Res. A, 1984, vol. 225, p.313.Google Scholar
  29. 29.
    Kawai, H., Haba, Ju., Homma, T., et al., Nucl. Instrum. Methods Phys. Res. A, 1985, vol. 228, p. 314.Google Scholar
  30. 30.
    Carlson, P., Nucl. Instrum. Methods Phys. Res. A, 1986, vol. 248, p. 110.Google Scholar
  31. 31.
    Poelz, G., Nucl. Instrum. Methods Phys. Res. A, 1986, vol. 248, p. 118.Google Scholar
  32. 32.
    Vincent, P., Deble, R., Pfoh, A., et al., Nucl. Instrum. Methods Phys. Res. A, 1988, vol. 272, p. 660.Google Scholar
  33. 33.
    Onuchin, A., Shamov, A., Skovpen, Yu., et al., Nucl. Instrum. Methods Phys. Res. A, 1992, vol. 315, p. 517.Google Scholar
  34. 34.
    Asner, D., Butler, S., Dominik, V., et al., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 374, p. 286.Google Scholar
  35. 35.
    Buzykaev, A.R., Danilyuk, A.F., Ganzhur, S., et al., Nucl. Instrum. Methods Phys. Res. A, 1996, vol. 379, p. 465.Google Scholar
  36. 36.
    Arisaka, K., Borsato, E., Boutigny, D., et al., Nucl. Instrum and Methods, 1997, vol. 385, p. 74.Google Scholar
  37. 37.
    Suda, R., Watanabe, M., Enomoto, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 406, p. 213.Google Scholar
  38. 38.
    Akimov, Yu.K., Zrelov, V.P., Krupa, L., Kratk. Soobshch. OIYaI, 1998, no. 5(91-98).Google Scholar
  39. 39.
    Khan, M.H.R., Murakami, A., Simiyoshi, T., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 413, p. 201.Google Scholar
  40. 40.
    Asaoka, Y., Abe, K., Yoshimura, K., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 416, p. 236.Google Scholar
  41. 41.
    Sumiyoshi, T., Adachi, I., Enomoto, R., et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 369.Google Scholar
  42. 42.
    Arisaka, K., Borsato, E., Boudigny, D., et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 375.Google Scholar
  43. 43.
    Barnykov, M.Yu., Buzykaev, A.R., Danilyuk, A.F., etal., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 419, p. 584.Google Scholar
  44. 44.
    Sumiyoshi, T., Adachi, I., Enomoto, R., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 385.Google Scholar
  45. 45.
    Buzykaev, A.R., Danilyuk, A.F., Ganzhur, S.F., et al., Nucl. Insrum. Methods, 1999, vol. 433, p. 396.Google Scholar
  46. 46.
    Danilyuk, A.F., Kravchenko, E.A., Okunev, A.G., et al., Nucl. Instrum. Methods Phys. Res. A, 1999, vol. 433, p. 406.Google Scholar
  47. 47.
    Aschenauer, E., Bianchi, N., Capitani, G.P., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 440, p. 338.Google Scholar
  48. 48.
    Barnykov, M.Yu., Bobrovnikov, V.S., Buzykaev, A.R., et al., Nucl. Instrum. Methods Phys. Res. A, 2000, vol. 453, p. 326.Google Scholar
  49. 49.
    Filin, S.V., Ginzburg, N.S., Kaminsky, A.K., et al., Abstracts of Papers, 21st Int. Free Electr. Laser Conf. and 6th FFEL Appl. Workshop, DESY. Hamburg, Germany, 1999, Feldhaus, J. and, Weise, H., Eds, Amsterdam: North-Holland, 2000.Google Scholar
  50. 50.
    Elzhov, A.V., Kaminskii, A.K., Puzynin, A.I., et al., Abstracts of Papers, III Nauchnyi seminar pamyati V.P. Sarantseva (Proc. III Sarantsev Scientific Seminar), Dubna, 2000, no. D9-2000-69, p. 118.Google Scholar
  51. 51.
    De Leo, R. and Capozzi, V., Casalino, C., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 457, p. 52.Google Scholar
  52. 52.
    Ishino, M., Chiba, J., En`yo, H., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 457, p. 581.Google Scholar
  53. 53.
    Barancourt, D., Barao, F., Barbier, G., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 465, p. 306.Google Scholar
  54. 54.
    Lagamba, L., Cisbani, E., Colilli, S., et al., Nucl. Instrum. Methods Phys. Res. A, 2001, vol. 471, p. 325.Google Scholar
  55. 55.
    Abashian, A., Abe, K., Abe, R., et al., Nucl. Instrum. Methods Phys. Res. A, 2002, vol. 479, p. 117.Google Scholar
  56. 56.
    Akimov, Yu.K., Zrelov, V.P., Puzynin, A.I., et al., Prib. Tekh. Eksp., 2002, no. 5, p. 55.Google Scholar
  57. 57.
    Weust, C. and Tillotson, T., US Patent 5 416 376, 1992.Google Scholar
  58. 58.
    Hrubesh, L.W., J. Non-Cryst. Solids, 1998, vol. 225, p. 335.Google Scholar
  59. 59.
    Merzbacher, C.I., Meier, S.R., Pierce, J.R., and Korwin, M.L., J. Non-Cryst. Solids, 2001, vol. 285, p. 210.Google Scholar
  60. 60.
    Gervais, G., Yawata, K., Mulders, N., and Halperin, W.P., Phys. Rev. Lett., 2002, vol. 88, p. 045505.Google Scholar
  61. 61.
    Chan, M.H.W., Blum, K.J., Murphy, S.Q., et al., Phys. Rev. Lett., 1988, vol. 61, p. 1950.Google Scholar
  62. 62.
    Maynard, R. and Deutscher, G., Europhys. Lett., 1989, vol. 10, p. 257.Google Scholar
  63. 63.
    Wong, G.K.S., Crowell, P.A., Cho, H.A., and Reppy, J.D., Phys. Rev. Lett., 1990, vol. 65, p. 2410.Google Scholar
  64. 64.
    Wong, A.P.Y. and Chan, M.H.W, Phys. Rev. Lett., 1990, vol. 65, p. 2567.Google Scholar
  65. 65.
    Mulders, N., Mehrotra, R., Goldner, L.S., and Ahlers, G., Phys. Rev. Lett., 1991, vol. 67, p. 695.Google Scholar
  66. 66.
    Larson, M., Mulders, N., and Ahlers, G., Phys. Rev. Lett., 1992, vol. 68, p. 3896.Google Scholar
  67. 67.
    Ma, J., Kim, S.B., Hrubesh, L.W., and Chan, M.H.W., Phys. Rev. Lett., 1993, vol. 93, p. 945.Google Scholar
  68. 68.
    Wong, A.P.Y., Kim, S.B., Goldburg, W.I., and Chan, M.H.W., Phys. Rev. Lett., 1993, vol. 70, p. 954.Google Scholar
  69. 69.
    Porto, J.V. and Parpia, J.M., Phys. Rev. Lett., 1995, vol. 74, p. 4667.Google Scholar
  70. 70.
    Porto, J.V. and Parpia, J.M., J. Low Temp. Phys., 1995, vol. 101, p. 397.Google Scholar
  71. 71.
    Alles, H., Kaplinsky, J.S., Wootton, P.S., et al., Phys. Rev. Lett., 1999, vol. 83, p. 1367.Google Scholar
  72. 72.
    Lawes, G., Kingsley, S.C.J., Mulders, N., and Parpia, J.M., Phys. Rev. Lett., 2000, vol. 84, p. 4148.Google Scholar
  73. 73.
    Sprague, D.T., Haard, T.M., and Kycia, J.B., et al., Phys. Rev. Lett., 1995, vol. 75, p. 661; 1996, vol. 77, p.4568; J. Low Temp. Phys., 1995, vol. 101, p. 185.Google Scholar
  74. 74.
    Barker, B.J., Polukhina, L., Poco, J.F., et al., J. Low Temp. Phys., 1998, vol. 113, p. 635.Google Scholar
  75. 75.
    Einzel, D. and Parpia, J.M., Phys. Rev. Lett., 1998, vol. 81, p. 3896.Google Scholar
  76. 76.
    Kingsley, S.C.J., Lawes, G., Golov, A., et al., J. Low Temp. Phys., 1998, vol. 113, p. 357.Google Scholar
  77. 77.
    Golov, A., Geller, D.A., Parpia, J.M., and Mulders, N., Phys. Rev. Lett., 1999, vol. 82, p. 3429.Google Scholar
  78. 78.
    Barker, B.J. and Osheroff, D.D., Phys. Rev. Lett., 1999, vol. 83, p. 1367.Google Scholar
  79. 79.
    Barker, B.J., Lee, Y., Polukhina, L., et al., Phys. Rev. Lett., 2000, vol. 85, 2148.Google Scholar
  80. 80.
    Nomura, R., Gervais, G., Haard, T.M., et al., Phys. Rev. Lett., 2000, vol. 85, p. 4325.Google Scholar
  81. 81.
    Gervais, G., Haard, T.M., Nomura, R., et al., Phys. Rev. Lett., 2000, vol. 87, p. 035701.Google Scholar
  82. 82.
    Brussard, P., Fisher, S.N., Guenault, A.M., et al., Phys. Rev. Lett., 2001, vol. 86, p. 4580.Google Scholar
  83. 83.
    Gervais, G., Nomura, R., Haard, T.M., et al., J. Low Temp. Phys., 2001, vol. 122, p. 1.Google Scholar
  84. 84.
    Dmitriev, V.V., Zav'yalov, V.V., Zmeev, D.E., et al., Pis'ma Zh. Eksp. Teor. Fiz., 2002, vol. 76, p. 371.Google Scholar
  85. 85.
    Dmitriev, V.V., Kosarev, I.V., Mulders, N., et al., Physica, 2003, (in press).Google Scholar
  86. 86.
    Fearon, E.M., Coronado, P.R., Garza, R.G., and Darling, G.H., J. Nucl. Mater., 1987, vol. 149, p. 105.Google Scholar
  87. 87.
    Alon, U., Hecht, S., Mukamel, D., and Shvarts, D., Phys. Rev. Lett., 1995, vol. 74, p. 534.Google Scholar
  88. 88.
    Peyser, T.A., Miller, P.L., Stry, P.E., et al., Phys. Rev. Lett., 1995, vol. 75, p. 2332.Google Scholar
  89. 89.
    Amendt, P., Glendinning, S.G., Hammel, B.A., et al., Phys. Plasmas, 1997, vol. 4, p. 1862.Google Scholar
  90. 90.
    Koch, J.A., Estabrook, K.G., Bauer, J.D., et al., Phys. Plasmas, 1995, vol. 2, p. 3420.Google Scholar
  91. 91.
    Louis, H., Demeris, A., Budil, K.S., et al., Fusion Technol., 1995, vol. 28, p. 1833.Google Scholar
  92. 92.
    Schwarz, W., Ebert, V., Geerds, H., et al., J. Non-Cryst. Solids, 1992, vol. 145, p. 244.Google Scholar
  93. 93.
    Beer, G.A., Phys. Rev. Lett., 1986, vol. 57, p. 671.Google Scholar
  94. 94.
    Moon-Ho Jo, Jung-Kyun Hong, Hyung-Ho Park, et al., Thin Solid Films, 1997, nos. 308-309, p. 490.Google Scholar
  95. 95.
    Moon-Ho Jo, Jung-Kyun Hong, Hyung-Ho Park, et al., Microelectron. Eng., 1997, vol. 33, p. 343.Google Scholar
  96. 96.
    Hee-Sun Yang, Se-Young Choi, Sang-Hoon Hyun, etal., J. Non-Cryst. Solids, 1997, vol. 221, p. 151.Google Scholar
  97. 97.
    Hee-Sun Yang, Se-Young Choi, Sang Hoon Hyun, and Chan-Gyung Park, Thin Solid Films, 1999, vol. 348,p.69.Google Scholar
  98. 98.
    Xia Xiao, Streter, R., Gang Ruan, et al. Microelectron. Eng., 2000, vol. 54, p. 295.Google Scholar
  99. 99.
    Hongyou Fan, Bentley, H.R., Kathan, K.R., et al., J.Non-Cryst. Solids, 2001, vol. 285, p. 79.Google Scholar
  100. 100.
    Schmidt, M. and Schwertfeger, F., J. Non-Cryst. Solids, 1998, vol. 225, p. 364.Google Scholar
  101. 101.
    Casas, Ll., Roig, A., Rodriguez, E., et al., J. Non-Cryst. Phys., 2001, vol. 285, p. 37.Google Scholar
  102. 102.
    Pekala, R.W., Farmer, J.C., Alviso, C.T., et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 74.Google Scholar
  103. 103.
    Schmitt, C., Probstle, H., and Fricke, J., J. Non-Cryst. Solids, 2001, vol. 285, p. 277.Google Scholar
  104. 104.
    Petricevic, R., Glora, M., Moginger, A., and Fricke, J., J. Non-Cryst. Solids, 2001, vol. 285, p. 272.Google Scholar
  105. 105.
    Clora, M., Wiener, M., Petricevic, R., et al., J. Non-Cryst. Solids, 2001, vol. 285, p. 283.Google Scholar
  106. 106.
    Mayer, S.T., Pekala, R.W., and Kaschmitter, J.L., J.Electrochem. Soc., 1993, vol. 140, p. 446.Google Scholar
  107. 107.
    Cross, J., Goswin, R., Gerlach, R., and Fricke, J., Rev. Phys. Appl., 1989, vol. 24, C4–185.Google Scholar
  108. 108.
    Lobmann, P., Glaubitt, W., Gels, S., and Fricke, J., J.Sol-Gel Sci. Technol., 1999, vol. 16, p. 173.Google Scholar
  109. 109.
    Schlief, T., Gross, J., and Fricke, J., J. Non-Cryst. Solids, 1992, vol. 145, p. 223.Google Scholar
  110. 110.
    Zimmermann, A., Gross, J., and Fricke, J., J. Non-Cryst. Solids, 1995, vol. 186, p. 238.Google Scholar
  111. 111.
    Gibiat, V., Lefeuvre, O., Woignier, T., et al., J. Non-Cryst. Solids, 1995, vol. 186, p. 244.Google Scholar
  112. 112.
    Forest, L., Gibiat, V., and Hooley, A., J. Non-Cryst. Solids, 2001, vol. 285, p. 230.Google Scholar
  113. 113.
    Gerlach, R., Kraus, O., Fricke, J., et al., J. Non-Cryst. Solids, 1992, vol. 145, p. 227.Google Scholar
  114. 114.
    Fricke, J., H ummer, E., Morper, H.-J., and Scheuerp-flug, P., Rev. Phys. Appl., 1989, vol. 24, pp. 4-87.Google Scholar
  115. 115.
    Buttner, D., Caps, R., Heinemann, U., et al., Sol. Energy, 1988, vol. 40, p. 13.Google Scholar
  116. 116.
    Caps, R. and Doll, G., Fricke, J., et al., Rev. Phys. Appl., 1989, vol. 24, pp. 4-113.Google Scholar
  117. 117.
    Jensen, K.I., J. Non-Cryst. Solids, 1992, vol. 145,p. 237.Google Scholar
  118. 118.
    Reim, M., Beck, A., Korner, W., et al., Sol. Energy, 2002, vol. 72, p. 21.Google Scholar
  119. 119.
    Boy, E., Munding, M., and Wittwer, V., Rev. Phys. Appl., 1989, vol. 24, pp. 4-99.Google Scholar
  120. 120.
    Ackerman, W.C., Vlachos, M., Rouanet, S., and Fruendt, J., J. Non.-Cryst. Solids, 2001, vol. 285, p. 264.Google Scholar
  121. 121.
    Svendsen, S., J. Non-Cryst. Solids, 1992, vol. 145, p. 240.Google Scholar
  122. 122.
    Hummer, E., Lu, X., Rettelbach, Th., and Fricke, J., J.Non-Cryst. Solids, 1992, vol. 145, p. 211.Google Scholar
  123. 123.
    Alkemper, J., Buchholz, T., Murakami, K., and Ratke, L., J. Non-Cryst. Solids, 1995, vol. 186, p. 395.Google Scholar
  124. 124.
    Moner-Girona, M., Martinez, E., and Roig, A., et al., J.Non-Cryst. Solids, 2001, vol. 285, p. 244.Google Scholar
  125. 125.
    Young-Geun Kwon, Se-Young Choi, Eul-Son Kang, Seung-Su Baek, J. Mater. Sci., 2000, vol. 35, p. 6075.Google Scholar
  126. 126.
    White, S., Aerosp. Technol. Innovat., 1998, vol. 6, no. 5,p. 1.Google Scholar
  127. 127.
    Andersen, W. and Ahrens, T.J., J. Geophys. Res., 1994, vol. 99, p. 2063.Google Scholar
  128. 128.
    Hrubesh, L.W. and Poco, J.F., Lawrence National Laboratory Report, Livermole, USA, 1990, no. UCLR-CR 105858 SUM.Google Scholar
  129. 129.
    Tsou, P., J. Non-Cryst. Solids, 1995, vol. 186, p. 415.Google Scholar
  130. 130.
    Barret, R.A., Zolensky, M.E., Horz, F., et al., Abstracts of Papers, Proc. 22nd Lunar Planet Sci. Conf., Houston, 1991, Houston, Texas: Publ. Lunar and Planary Inst., 1992, p. 203.Google Scholar
  131. 131.
    Burchell, M.J. and Thomson, R., AIP Conf. Proc., 1996, vol. 370, part 2, p. 1155.Google Scholar
  132. 132.
    Horz, F., Cress, G., Zolensky, M., et al., NASA Report “Orbital Debris Collector,” 2001, Internet.Google Scholar
  133. 133.
    Produced by the Jet Propulsion Laboratory, NASA`s Pasadena, Calif., USA.Google Scholar
  134. 134.
    IEEE Spectrum. Newslog., May 9, 2002, Internet.Google Scholar
  135. 135.
    Ayers, M.R. and Hunt, A.J., J. Non-Cryst. Solids, 1998, vol. 225, p. 343.Google Scholar
  136. 136.
    Jun Shen, Jue Wang, Bin Zhou, et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 315.Google Scholar
  137. 137.
    Power, M., Hosticka, B., Black, E., et al., J. Non-Cryst. Solids, 2001, vol. 285, p. 303.Google Scholar
  138. 138.
    Hrubesh, L.W., Coronado, P.R., and Satcher Jr., J.H., J.Non-Cryst. Phys., 2001, vol. 285, p. 328.Google Scholar
  139. 139.
    Woignier, T., Renes, J., Phalippou, J., et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 353.Google Scholar
  140. 140.
    Guise, M.T., Hosticka, B., Earp, B.C., and Norris, P.M., J. Non-Cryst. Phys., 2001, vol. 285, p. 317.Google Scholar
  141. 141.
    Owens, L., Tillotson, T.M., and Hair, L.M., J. Non-Cryst. Solids, 1995, vol. 186, p. 187.Google Scholar
  142. 142.
    Yoda, S., Otake, K., Takebayashi, Y., et al. J. Non-Cryst. Phys., 2001, vol. 285, p. 8.Google Scholar
  143. 143.
    Metelkina, O., Husing, N., Pongradz, P., and Schubert, U., J. Non-Cryst. Solids, 2001, vol. 285, p. 64.Google Scholar
  144. 144.
    Dong Jin Suh, Tae-Jin Park, Seo-Ho Lee, and Kyung-Lim Kim, J. Non-Cryst. Solids, 2001, vol. 285, p. 309.Google Scholar
  145. 145.
    Hoang-Van, C., Pommier, B., Harivololona, R., and Pichat, P., J. Non-Cryst. Solids, 1992, vol. 145, p. 250.Google Scholar
  146. 146.
    Long, J.W., Stroud, R.M., and Rolison, D.R., J. Non-Cryst. Solids, 2001, vol. 285, p. 288.Google Scholar
  147. 147.
    Gash, A.E., Tilotson, T.M., Satcher, Jr., J.H., et al., J.Non-Cryst. Solids, 2001, vol. 285, p. 22.Google Scholar
  148. 148.
    Hirashima, H., Kojima, C., Kohaba, K., et al., J. Non-Cryst. Solids, 1998, vol. 225, p. 153.Google Scholar
  149. 149.
    Chono, T., Hamada, H., Haneda, M., et al., J. Non-Cryst. Solids, 2001, vol. 285, p. 333.Google Scholar
  150. 150.
    Poco, J.F., Satcher Jr., J.H., and Hrubesh, L.W., J. Non-Cryst. Solids, 2001, vol. 285, p. 57.Google Scholar
  151. 151.
    Lobmann, P., Glaubitt, W., Geis, S., and Fricke, J., J.Sol-Gel. Sci. Technol., 1999, vol. 16, p. 173.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • Yu. K. Akimov
    • 1
  1. 1.Joint Institute for Nuclear ResearchMoscow oblastRussia

Personalised recommendations