Advertisement

Photosynthetica

, Volume 40, Issue 4, pp 575–579 | Cite as

Photosynthesis of Cockspur [Echinochloa crus-galli (L.) Beauv.] at Sites of Naturally Elevated CO2 Concentration

  • D. Vodnik
  • H. Pfanz
  • I. Maček
  • D. Kastelec
  • S. Lojen
  • F. Batič
Article

Abstract

High abundance of cockspur (Echinochloa crus-galli) at the geothermal carbon dioxide spring area in Stavešinci indicates that this species is able to grow under widely varying CO2 concentrations. Living cockspur plants can even be found very close to gas-releasing vents where growth is significantly reduced. Plant height correlated well with CO2 exposure. The δ13C value of the CO2 spring air was −3.9 ‰ and δ13C values of high-, medium-, and low-CO2 plants were −10.14, −10.44, and −11.95 ‰, respectively. Stomatal response directly followed the prevailing CO2 concentrations, with the highest reduction of stomatal conductance in high CO2 concentration grown plants. Analysis of the curves relating net photosynthetic rate to intercellular CO2 concentration (PN-Ci curves) revealed higher CO2 compensation concentration in plants growing at higher CO2 concentration. This indicates adjustment of respiration and photosynthetic carbon assimilation according to the prevailing CO2 concentrations during germination and growth. There was no difference in other photosynthetic parameters measured.

carbon dioxide springs chlorophyll CO2 compensation concentration intercellular CO2 concentration net photosynthetic rate plant height stomatal conductance δ13

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badiani, M., Raschi, A., Paolacci, A.R., Miglietta, F.: Plants responses to elevated CO2; a perspective from natural CO2 springs.-In: Agrawal, S.B., Agrawal, M. (ed.): Environmental Pollution and Plant Response. Pp. 45-81. Lewis Publ., Boca Raton 2000.Google Scholar
  2. Batič, F., Bernik, R., Pfanz, H., Wittmann, C., Šircelj, H., Schmidt, J., Turk, B.: Effects of elevated CO2 concentrations from natural sources on anatomy and physiology of selected plant species.-In: Kaligarič, M., Škornik, S. (ed.): SNACE, FACE and OTC's CO2 Enrichment at the Leaf/Air Interface and/or the Root/Soil Interface; Results in Growth and Development of Plants. Pp. 10-11. University of Maribor, Maribor 1999.Google Scholar
  3. Bettarini, I., Vaccari, F.P., Miglietta, F.: Elevated CO2 concentration and stomatal density: observations from 17 plant species growing in a CO2 spring in central Italy.-Global Change Biol. 4: 17-22, 1998.Google Scholar
  4. Cook, A.C., Tissue, D.T., Roberts, S.W., Oechel, W.C.: Effect of long-term elevated [CO2] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology.-Plant Cell Environ. 21: 417-425, 1998.Google Scholar
  5. Coplen, T.B.: Atomic weights of the elements 1995.-Pure appl. Chem. 68: 2339-2359, 1996.Google Scholar
  6. Drake, B.G., Gonzàlez-Meler, M.A., Long, S.P.: More efficient plants: A consequence of rising atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 609-639, 1997.Google Scholar
  7. Farquhar, G.D.: On the nature of carbon isotope discrimination in C4 species.-Aust. J. Plant Physiol. 10: 205-226, 1983.Google Scholar
  8. Ghannoum, O., Caemmerer, S. von, Ziska, L.H., Conroy, J.P.: The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment.-Plant Cell Environ. 23: 931-942, 2000.Google Scholar
  9. Kaligarič, M.: Vegetation patterns and responses to elevated CO2 from natural CO2 springs at Strmec (Radenci, Slovenia).-Acta biol. Slov. 44: 31-38, 2001.Google Scholar
  10. Lichtenthaler, H.K.: Chlorophylls and carotenoids — pigments of photosynthetic biomembranes.-In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 148. Pp. 350-382. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1987.Google Scholar
  11. Miglietta, F., Bettarini, I., Raschi, A., Körner, C., Vaccari, F.P.: Isotope discrimination and photosynthesis of vegetation growing in the II Bossoleto CO2 spring.-Chemosphere 36: 771-776. 1998.Google Scholar
  12. Mook, W.G.: 13C in atmospheric CO2.-Neth. J. Sea Res. 20: 211-223, 1986.Google Scholar
  13. Peterson, B.J., Howarth, R.W.: Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia.-Limnol. Oceanogr. 32: 1195-1213, 1987.Google Scholar
  14. Pezdič, J., Dolenec, T., Pirc, S., Žižek, D.: Hydrogeochemical properties and activity of the fluids in the Pomurje Region of the Pannonian Sedimentary Basin.-Acta geol. hung. 39: 319-340, 1995.Google Scholar
  15. Potvin, C., Goeschl, J.D., Strain, B.R.: Effects of temperature and CO2 enrichment on carbon translocation of plants of the C4 grass species Echinochloa crus-galli (L.) Beauv. from cool and warm environments.-Plant Physiol. 75: 1054-1057, 1984.Google Scholar
  16. Raschi, A., Miglietta, F., Tognetti, R., van Gardingen, P.R.: Plant Responses to Elevated CO2. Evidence from Natural Springs.-Cambridge University Press, Cambridge 1997.Google Scholar
  17. Tognetti, R., Giovannelli, A., Longobucco, A., Miglietta, F., Raschi, A.: Water relations of oak species growing in the natural CO2 spring of Rapolano (central Italy).-Ann. Sci. forest. 53: 475-485, 1996.Google Scholar
  18. Tognetti, R., Johnson, J.D.: Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus ilex L.-seedlings from a coppice stand growing at a natural CO2 spring.-Ann. Forest Sci. 56: 549-561, 1999.Google Scholar
  19. Tognetti, R., Longobucco, A., Miglietta, F., Raschi, A.: Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring.-Plant Cell Environ. 21: 613-622, 1998.Google Scholar
  20. Tognetti, R., Longobucco, A., Miglietta, F., Raschi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261-270, 1999.Google Scholar
  21. Turk, B., Pfanz, H., Vodnik, D., Batič, F., Sinkovič, T.: The effects of elevated CO2 in natural CO2 springs on bog rush (Juncus effusus L.) plants. I. Effects on shoot anatomy.-Phyton (Austria): in press, 2002.Google Scholar
  22. Vodnik, D., Pfanz, H., Maček, I., Wittmann, C., Kastelec, D., Batič, F.: Plant performance under elevated CO2. — Experience from the natural CO2 spring Stavešinci.-In: Dolenc-Koce, J., Vodnik, D., Dermastia, M. (ed.): 3rd Slovenian Symposium on Plant Physiology, September 25–27, 2002, Ljubljana. Book of Abstracts. P. 60. Slovenian Society of Plant Physiology, Ljubljana 2002.Google Scholar
  23. Wand, S.J.E., Midgley, G.F., Jones, M.H., Curtis, P.S.: Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions.-Global Change Biol. 5: 723-741, 1999.Google Scholar
  24. Yoshioka, T., Satoh, S., Yamasue, Y.: Effect of increased concentration of soil CO2 on intermittent flushes of seed germination in Echinochloa crus-galli var. crus-galli.-Plant Cell Environ. 21: 1301-1306, 1998.Google Scholar
  25. Ziska, L.H., Bunce, J.A.: Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds.-Photosynth. Res. 54: 199-208, 1997.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D. Vodnik
    • 1
  • H. Pfanz
    • 2
  • I. Maček
    • 1
  • D. Kastelec
    • 1
  • S. Lojen
    • 3
  • F. Batič
    • 1
  1. 1.Agronomy Department, Biotechnical FacultyUniversity of Ljubljana, Jamnikarjeva 101LjubljanaSlovenia
  2. 2.Institute for Applied BotanyUniversity of EssenEssenGermany
  3. 3.Jožef Stefan Institute, Jamova 39LjubljanaSlovenia

Personalised recommendations