Neurochemical Research

, Volume 28, Issue 8, pp 1181–1186 | Cite as

Effects of Undernutrition on Glutamatergic Parameters in Rat Brain

  • Liane N. Rotta
  • André P. Schmidt
  • Tadeu Mello e Souza
  • Cristina W. Nogueira
  • Karine B. Souza
  • Ivan A. Izquierdo
  • Marcos L. S. Perry
  • Diogo O. Souza
Article

Abstract

Early restriction of nutrients during the perinatal period has marked repercussions on CNS ontogeny, Leading to impaired functions. This study investigated the effects of pre- and postnatal (up to 75 days) undernutrition (diet: 8% protein; normonourished group: 25% protein) on some glutamatergic and behavioral parameters of rats. Undernutrition reduced: (i) seizures caused by ICV quinolinic acid (QA) administration; (ii) Na-independent [3H]glutamate binding in cell plasma membranes of cerebral cortex, and (ii) basal [3H]glutamate release from synaptosomal preparation. Behavioral parameters related to locomotion, anxiety, or memory were not affected. These results indicate that our model of undernutrition decreased the sensitivity to QA as convulsing agent and point to some putative glutamatergic parameters involved in this effect.

Undernutrition glutamatergic system quinolinic acid seizures behavioral parameters 

REFERENCES

  1. 1.
    Galler, J. R., Shumsky, L. S., and Morgane, P. J. 1995. Malnutrition and brain development. Pages 196-212, In Walker, W. A. and Watkins J. B. (eds.), Nutrition in pediatrics: Basic science and clinical applications, London.Google Scholar
  2. 2.
    Levitsky, D. A. and Strupp, B. J. 1995. Malnutrition and the brain: Changing concepts, changing concerns. J. Nutr. 125:2212S-2220S.Google Scholar
  3. 3.
    Morgan, B. G. L. and Naismith, D. J. 1992. The effect of early postnatal undernutrition on the growth and development of the rat brain. Brit. J. Nutr. 48:15-23.Google Scholar
  4. 4.
    Wiggins, R. C., Fuller, G., and Enna, S. J. 1984. Undernutrition and the development of brain neurotransmitter systems. Life Sci. 35:2085-2094.Google Scholar
  5. 5.
    Rocha, J. B. and Souza, D. O. 1994. Effects of undernutrition during suckling and early post-weaning on the inhibition by met-enkephalin of striatal adenylate cyclase activity in adult rats. Pharmacol. Toxicol. 75:321-323.Google Scholar
  6. 6.
    Steiger, J. L., Galler, J. R., Farb, D. H., and Russek, S. J. 2002. Prenatal protein malnutrition reduces β2, β3 and Γ2L GABAA receptor subunit mRNAs in the adult septum. Eur. J. Pharmacol. In press.Google Scholar
  7. 7.
    Izquierdo, I. and Medina, J. H. 1997. Memory formation: The sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol. Learn. Mem. 68:285-316.Google Scholar
  8. 8.
    Ozawa, S., Kamiya, H., and Tsukuki, K. 1998. Glutamate receptors in the mammalian central nervous system. Progr. Neurobiol. 54:581-618.Google Scholar
  9. 9.
    Stone, T. W. 2001. Kynurenines in the CNS: From endogenous obscurity to therapeutic importance. Prog. Neurobiol. 64:185-218.Google Scholar
  10. 10.
    Lara, D. R. Schmidt, A. P. Frizzo, M. E. Burgos, J. S. Ramirez, G., and Souza, D. O. 2001. Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res. 912:176-180.Google Scholar
  11. 11.
    Schmidt, A. P., Lara, D. R., Maraschin, J. F., Perla, A. S., and Souza, D. O. 2000. Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res. 864:40-4311.Google Scholar
  12. 12.
    Tavares, R. G., Tasca, C. I., Santos, C. E., S. Alves, L. B., Porciuncula, L. O. Emanuelli, T., and Souza, D. O. 2002. Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes. Neurochem. Int. 40: 621-627.Google Scholar
  13. 13.
    Tavares, R. G., Tasca, C. I., Santos, C. E. S., Wajner, M., Souza, D. O., and Dutra-Filho, C. S. 2000. Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport 27:249-253.Google Scholar
  14. 14.
    Austin-LaFrance, R. J. Morgane, P. J., and Bronzino, J. D. 1991. Prenatal protein malnutrition and hippocampal function: Rapid kindling. Brain Res. Bull. 27:815-818.Google Scholar
  15. 15.
    Bronzino, J. D., Blaise, J. H., Mokler, D. J., Galler, J. R., and Morgane, P. J. 1999. Modulation of paired-pulse responses in the dentate gyrus: Effects of prenatal protein malnutrition. Brain Res. 849:45-57.Google Scholar
  16. 16.
    Horwitz W. 1980. Official methods of analysis of the Association of Official Analytical Chemists. AOAC, Washington, DC.Google Scholar
  17. 17.
    Pellow, S., Chopin, P., File, S. E., and Briley, M. 1985. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Meth. 14:149-176.Google Scholar
  18. 18.
    Dunkley, P. R., Heath, J. W., Harrison, S. M., Jarvie, P. E., Glenfield, P. J., and Rostas, J. A. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: Homogeneity and morphology of subcellular fractions. Brain Res. 441:59-71.Google Scholar
  19. 19.
    Lowry, H. O., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.Google Scholar
  20. 20.
    Jones, D. H. and Matus, A. I. 1974. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochem. Biophys. Acta 356: 276-287.Google Scholar
  21. 21.
    Emanuelli, T., Antunes, V., and Souza, D. O. G. 1998. Characterization of L-[3H] glutamate binding to fresh and frozen crude plasma membrane isolated from cerebral cortex of adult rats. Biochem. Mol. Biol. Int. 44:1265-1272.Google Scholar
  22. 22.
    Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65:1-105.Google Scholar
  23. 23.
    Bough, K., Gudi, K., Han, F., Rathod, A., and Eagles, D. 2002. An anticonvulsant profile of the ketogenic diet in the rat. Epilepsy Res. 50:313-325.Google Scholar
  24. 24.
    al-Mudalla, A. S., Levin, B. E., Lust, W. D., and Harik, S. I. 1995. Effects of unbalanced diets on cerebral glucose metabolism in the adult rat. Neurology 45:2261-2265.Google Scholar
  25. 25.
    Bell, M. J., Kochaneck, P. M., Heyes, M. P., Wisniewski, S. R., Sinz, E. H., Clark, R. S. B., Blight, A. R., Marion, D. W., and Adelson, P. D. 1999. Quinolinic acid in the cerebrospinal fluid of children after traumatic injury. Crit. Care Med. 27:493-497.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Liane N. Rotta
    • 1
    • 2
  • André P. Schmidt
    • 1
  • Tadeu Mello e Souza
    • 1
  • Cristina W. Nogueira
    • 3
  • Karine B. Souza
    • 1
  • Ivan A. Izquierdo
    • 1
  • Marcos L. S. Perry
    • 1
  • Diogo O. Souza
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto Alegre, RSBrazil
  2. 2.Faculdade de FarmáciaUniversidade Luterana do BrasilCanoas, RSBrazil
  3. 3.Departamento de Química, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta Maria, RSBrazil

Personalised recommendations