Journal of Chemical Ecology

, Volume 29, Issue 7, pp 1601–1609 | Cite as

Field Evaluation of Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects: Methyl Salicylate and the Green Lacewing, Chrysopa nigricornis

  • David G. James


Synthetic methyl salicylate (MeSA), a herbivore-induced plant volatile (HIPV), was demonstrated to be an attractant for the green lacewing, Chrysopanigricornis, in two field experiments conducted in a Washington hop yard. Significantly greater numbers of C. nigricornis were trapped on MeSA-baited sticky cards (mean: 2.8 ± 0.4/card/week) than on unbaited cards (0.45 ± 0.15) during June–September. Cards baited with two other HIPVs, hexenyl acetate and dimethyl nonatriene, did not attract more C. nigricornis than did unbaited traps (0.30 ± 0.10, 0.44 ± 0.15, respectively). MeSA-baited Unitraps captured 1.9 ± 0.5 C. nigricornis/trap/week during July–August compared to 0.20 ± 0.20/trap/week in methyl eugenol-baited traps and 0.03 ± 0.03/trap/week in unbaited traps. The potential use of MeSA in enhancing C.nigricornis populations in Washington hop yards as an aid to conservation biological control of aphids and mites is discussed.

Herbivore-induced plant volatiles methyl salicylate Chrysopa nigricornis attractant predators biological control hops 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, C. W., Sterling, W. L., and Dean, D. A. 1981. Notes on the Chrysopidae and Hemerobiidae of Eastern Texas with keys for their identification. Southwest. Entomol. 4(Suppl.):1–20.Google Scholar
  2. Agrawal, A. A., Janssen, A., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 2002. An ecological cost of plant defence: Attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5:377–385.Google Scholar
  3. Bolter, C. J., Dicke, M., van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetles to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.Google Scholar
  4. Caltagirone, L. E. 1969. Terpenyl acetate bait attracts Chrysopa adults. J. Econ. Entomol. 62:1237.Google Scholar
  5. Campbell, C. A. M., Pettersson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1993. Spring migration of Damson-Hop aphid, Phorodon humuli (Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. J. Chem. Ecol. 19:1569–1576.Google Scholar
  6. Dicke, M. and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.Google Scholar
  7. Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predator–prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.Google Scholar
  8. Dicke, M., Takabayashi, J., Posthumus, M. A., Schutte, C., and Krips, O. E. 1998. Plant–phytoseiid interactions mediated by prey-induced plant volatiles: Variation in production of cues and variation in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.Google Scholar
  9. Drukker, B., Bruin, J., and Sabelis, M. 2000. Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25:260–265.Google Scholar
  10. Drukker, B., Scutareanu, P., and Sabelis, M. W. 1995. Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomol. Exp. et Applicata 77:193–203.Google Scholar
  11. Flint, H. M., Slater, S. S.l., and Walters, S. 1979. Caryophyllene: An attractant for the green lacewing. Environ. Entomol. 8:1123–1125.Google Scholar
  12. Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested and uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.Google Scholar
  13. Glinwood, R. and Pettersson, J. 2000. Host plant choice in Rhopalosiphum padi spring migrants and the role of olfaction in winter host leaving. Bull. Entomol. Res. 90:57–61.Google Scholar
  14. Hardie, J., Isaacs, R., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1994. Methyl salicylate and (–)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20:2847–2855.Google Scholar
  15. Hunter, M. D. 2002. A breath of fresh air: Beyond laboratory studies of plant volatile–natural enemy interactions. Agric. Forest Ent. 4:81–86.Google Scholar
  16. James, D. G. in preparation 2003. Synthetic herbivore-induced plant volatiles as attractants for beneficial insects.Google Scholar
  17. James, D. G., Price, T. S., and Wright, L. C. 2003. Mites and aphids in Washington hops: Candidates for augmentative or conservation biological control? Proc. 1 st Int. Symp. Biol. Cont. Arthropods Google Scholar
  18. James, D. G., Price, T. S., Wright, L. C., Coyle, J., and Perez, J. 2001. Mite abundance and phenology on commercial and escaped hops. Int. J. Acarol. 27:151–156.Google Scholar
  19. Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.Google Scholar
  20. Lluisa, J. and Penuelas, J. 2001. Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp. Appl. Acarol. 25:65–77.Google Scholar
  21. Losel, P. M., Lindemann, M., Scherkenbeck, J., Maier, J., Engelhard, B., Campbell, C. A. M., Hardie, J., Pickett, J. A., Wadhams, L. J., and Elbert, A. 1996. The potential of semiochemicals for control of Phorodon humuli (Homoptera: Aphididae). Pesticide Sci. 48:293–303.Google Scholar
  22. Ninkovic, V., Ahmed, E., Glinwood, R., and Pettersson, J. 2003. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric. Forest Entomol. 5:27–33.Google Scholar
  23. Ockroy, M. L. B., Turlings, T. C. J., Edwards, P. J., Fritzsche-Hoballah, M. E., Ambrosetti, L., Bassetti, P., and Dorn, S. 2001. Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agric. Forest Ent. 3:201–209.Google Scholar
  24. Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000b. Involvement of jasmonate and salicylate-related signalling pathway for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398.Google Scholar
  25. Ozawa, R., Shimoda, T., Kawaguchi, M., Arimura, G., Horiuchi, J., Nishioka, T., and Takabayashi, J. 2000a. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113:427–433.Google Scholar
  26. Pare, P. W. and Tumlinson, J. H. 1996. Plant volatile signals in response to herbivore feeding. Fla. Entomol. 19:93–103.Google Scholar
  27. Penny, N. D., Tauber, C. A., and De Leon, T. 2000. A new species of Chrysopa from western North America with a key to North American species (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 93:776–784.Google Scholar
  28. Pettersson, J., Pickett, J. A., Pye, B. J., Quiroz, A., Smart, L. E., Wadhams, L. J., and Woodcock, C. M. 1994. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae) and other aphids in cereal fields. J. Chem Ecol. 20:2565–2574.Google Scholar
  29. Rodriguez-Saona, C., Crafts-Brandner, S. J., Williams L III., and Pare, P. W. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J. Chem. Ecol. 28:1733–1747.Google Scholar
  30. Sabelis, M. W., Janssen, A., Pallini, A., Venzon, M., Bruin, J., Drukker, B., and Scutareanu, P. 1999. Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: From evolutionary ecology to agricultural applications. pp. 269-298, in A. Agrawal, S. Tuzun, and E. Bent (Eds.). Induced Plant Defences Against Pathogens and Herbivores. The American Phytopathological Society, St. Paul, Minnesota.Google Scholar
  31. Sakan, T., Isoe, S., and Hyeon, S. B. 1970. The chemistry of attractants for Chrysopidae from Actinidia polygama Miq., pp. 237-247, in D. L. Wood, R. M. Silverstein, and M. Nakajima (Eds.). Control of Insect Behavior by Natural Products. Academic Press, New York.Google Scholar
  32. Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 1997. Volatiles from psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23:2241–2260.Google Scholar
  33. Shimoda, T., Takabayashi, J., Ashira, W., and Takafuji, A. 1997. Response of predatory insect, Scolothrips takahashi towards herbivore-induced plant volatiles under laboratory and field conditions. J. Chem. Ecol. 23:2033–2048.Google Scholar
  34. Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.Google Scholar
  35. Stowe, M. K., Turlings, T. C. J., Loughrin, J. H., Lewis, W. J., and Tumlinson, J. H. 1995. The chemistry of eavesdropping, alarm and deceit. Proc. Nat. Acad. Sci. USA 92:23-28Google Scholar
  36. Suda, D. Y. and Cunningham, R. T. 1970. Chrysopa basalis captured in plastic traps containing methyl eugenol. J. Econ. Entomol. 63:1706.Google Scholar
  37. Takabayashi, J. and Dicke, M. 1996. Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1:109–113.Google Scholar
  38. Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant–mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.Google Scholar
  39. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.Google Scholar
  40. Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.Google Scholar
  41. Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Tumlinson, J. H., and Lewis, W. J. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51-78, in D. R. Papaj and A. C. Lewis (Eds.). Insect Learning. Chapman and Hall, New York.Google Scholar
  42. Umeya, K. and Hirao, J. 1975. Attraction of the Jackfruit fly, Dacus umbrosus F. (Diptera: Tephritidae) and lacewing, Chrysopa sp. (Neuroptera: Chrysopidae) by lure traps baited with methyl eugenol and cue-lure in the Philippines. Appl. Entomol. Zool. 10:60–62.Google Scholar
  43. Van Emden, H. F., and Hagen, K. S. 1976. Olfactory reactions of the green lacewing, Chrysopa carnea, to tryptophan and certain breakdown products. Environ. Entomol. 5:469–473.Google Scholar
  44. Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.Google Scholar
  45. Zhu, J., Cosse, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plants: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Department of Entomology, Irrigated Agriculture Research and Extension CenterWashington State UniversityWashingtonUSA

Personalised recommendations