Advertisement

Nonlinear Dynamics

, Volume 32, Issue 1, pp 71–92 | Cite as

The Vectorial Parameterization of Rotation

  • Olivier A. Bauchau
  • Lorenzo Trainelli
Article

Abstract

The parameterization of rotation is the subject of continuous research and development in many theoretical and applied fields of mechanics, such as rigid body, structural, and multibody dynamics, robotics, spacecraft attitude dynamics, navigation, image processing, and so on. This paper introduces the vectorial parameterization of rotation, a class of parameterization techniques encompassing many formulations independently developed to date for the analysis of rotational motion. The exponential map of rotation, the Rodrigues, Cayley, Gibbs, Wiener, and Milenkovic parameterization all are special cases of the vectorial parameterization. This generalization parameterization sheds additional light on the fundamental properties of these techniques, pointing out the similarities in their formal structure and showing their inter-relationships. Although presented in a compact manner, all of the formulae needed for a complete implementation of the vectorial parameterization of rotation are included in this paper.

finite rotations parameterization of rotations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kane, T. R., Dynamics, Holt, Rinehart and Winston, New York, 1968.Google Scholar
  2. 2.
    Cardona, A., 'An integrated approach to mechanism analysis', Ph.D. Thesis, Université de Liège, 1989.Google Scholar
  3. 3.
    Shuster, M. D., 'A survey of attitude representations', Journal of the Astronautical Sciences 41, 1993, 439–517.Google Scholar
  4. 4.
    Ibrahimbegović, A., 'On the choice of finite rotation parameters', Computer Methods in Applied Mechanics and Engineering, 149, 1997, 49–71.Google Scholar
  5. 5.
    Simo, J. C. and Wong, K., 'Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum', International Journal for Numerical Methods in Engineering 31, 1991, 19–52.Google Scholar
  6. 6.
    Simo, J. C. and Tarnow, N., 'A new energy and momentum conserving algorithm for the nonlinear dynamics of shells', International Journal for Numerical Methods in Engineering 37, 1994, 2527–2549.Google Scholar
  7. 7.
    Simo, J. C., Tarnow, N., and Doblare, M., 'Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms', International Journal for Numerical Methods in Engineering 38, 1995, 1431–1473.Google Scholar
  8. 8.
    Bottasso, C. L. and Borri, M., 'Integrating finite rotations', Computer Methods in Applied Mechanics and Engineering 164, 1998, 307–331.Google Scholar
  9. 9.
    Bauchau, O. A. and Bottasso, C. L., 'On the design of energy preserving and decaying schemes for flexible, nonlinear multi-body systems', Computer Methods in Applied Mechanics and Engineering 169, 1999, 61–79.Google Scholar
  10. 10.
    Bottasso, C. L., Borri, M., and Trainelli, L., 'Integration of elastic multibody systems by invariant conserving/dissipating algorithms. Part I: Formulation', Computer Methods in Applied Mechanics and Engineering 190, 2001, 3669–3699.Google Scholar
  11. 11.
    Bottasso, C. L., Borri, M., and Trainelli, L., 'Integration of elastic multibody systems by invariant conserving/dissipating algorithms. Part II: Numerical schemes and applications', Computer Methods in Applied Mechanics and Engineering 190, 2001, 3701–3733.Google Scholar
  12. 12.
    Borri, M., Bottasso, C. L., and Trainelli, L., 'A novel momentum-preserving energy-decaying algorithm for finite element multibody procedures', in Proceedings of Computational Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, NATO Advanced Research Workshop, Pultusk, Poland, July 2-7, J. Ambrósio and M. Kleiber (eds.), IDMEC - Instituto de Engenheria Mecânica, Instituto Superior Tecnico, Lisboa, Portugal, 2000, pp. 549–568.Google Scholar
  13. 13.
    Bauchau, O. A., Bottasso, C. L., and Trainelli, L., 'Robust integration schemes for flexible multibody systems', Computer Methods in Applied Mechanics and Engineering 192, 2003, 395–420.Google Scholar
  14. 14.
    Bottasso, C. L., Borri, M., and Trainelli, L., 'Geometric invariance', Computational Mechanics 29, 2002, 163–169.Google Scholar
  15. 15.
    Murray, R. M., Li, Z., and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.Google Scholar
  16. 16.
    Bowen, R. M. and Wang, C.-C., Introduction to Vectors and Tensors. Vol. 1: Linear and Multilinear Algebra, Plenum Press, New York, 1976.Google Scholar
  17. 17.
    Bowen, R. M. and Wang, C.-C., Introduction to Vectors and Tensors. Vol. 2: Vector and Tensor Analysis, Plenum Press, New York, 1976.Google Scholar
  18. 18.
    Argyris, J., 'An excursion into large rotations', Computer Methods in Applied Mechanics and Engineering 32, 1982, 85–155.Google Scholar
  19. 19.
    Gibbs, J. W., Scientific Papers, Vol. II, Dover, New York, 1961.Google Scholar
  20. 20.
    Borri, M., Trainelli, L., and Bottasso, C. L., 'On representations and parameterizations of motion', Multibody Systems Dynamics 4, 2000, 129–193.Google Scholar
  21. 21.
    Wiener, T. F., 'Theoretical analysis of gimballess inertial reference equipment using delta-modulated instruments', Master's Thesis, Massachusetts Institute of Technology, 1962.Google Scholar
  22. 22.
    Milenkovic, V., 'Coordinates suitable for angular motion synthesis in robots', in Proceedings of the Robot VI Conference, Detroit MI, March 2-4, Society of Manufacturing Engineers, Dearborn, MI, 1982, Paper MS82-217.Google Scholar
  23. 23.
    Géradin, M. and Cardona, A., 'Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra', Computational Mechanics 4, 1989, 115–135.Google Scholar
  24. 24.
    Tsiotras, P., Junkins, J. L., and Schaub, H., 'Higher-order Cayley transforms with applications to attitude representation', Journal of Guidance, Control, and Dynamics 20(3), 1997, 528–534.Google Scholar
  25. 25.
    Stuelpnagel, J., 'On the parameterization of the three-dimensional rotation group', SIAM Review 6(4), 1964, 422–430.Google Scholar
  26. 26.
    Schaub, H. and Junkins, J. L., 'Stereographic orientation parameters for attitude dynamics: A generalization of the rodrigues parameters', The Journal of the Astronautical Sciences 44, 1996, 1–19.Google Scholar
  27. 27.
    Hamilton, W. R., Elements of Quaternions, Cambridge University Press, Cambridge, 1899.Google Scholar
  28. 28.
    Wehage, R. A., 'Quaternions and Euler parameters. A brief exposition', in Computer Aided Analysis and Optimization of Mechanical Systems Dynamics, E. J. Haug (ed.), Springer-Verlag, Berlin, 1984.Google Scholar
  29. 29.
    Spring, K. W., 'Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review', Mechanism and Machine Theory 21, 1986, 365–373.Google Scholar
  30. 30.
    Borri, M., Mello, F., and Atluri, S. N., 'Primal and mixed forms of Hamilton's principle for constrained rigid body systems: Numerical studies', Computational Mechanics 7, 1991, 205–220.Google Scholar
  31. 31.
    Klumpp, A. R., 'Singularity-free extraction of a quaternion from a direction-cosine matrix', Journal of Spacecraft and Rockets 13, 1976, 754–755.Google Scholar
  32. 32.
    Shepperd, S. W., 'Quaternion from rotation matrix', Journal of Guidance and Control 1, 1978, 223–224.Google Scholar
  33. 33.
    Pfister, F., 'Bernoulli numbers and rotational kinematics', Journal of Applied Mechanics 65, 1998, 758–763.Google Scholar
  34. 34.
    Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover, New York, 1964.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Olivier A. Bauchau
    • 1
  • Lorenzo Trainelli
    • 2
  1. 1.School of Aerospace EngineeringGeorgia Institute of TechnologyAtlantaU.S.A
  2. 2.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanoItaly

Personalised recommendations