Glycoconjugate Journal

, Volume 19, Issue 3, pp 197–210 | Cite as

Cloning and sequencing of nineteen transcript isoforms of the human α2,3-sialyltransferase gene, ST3Gal III; its genomic organisation and expression in human tissues

  • Ammi Grahn
  • Giti Shah Barkhordar
  • Göran Larson
Article

Abstract

The recruitment of human peripheral blood leukocytes (PBL) to sites of infection and inflammation requires the surface expression of Sialyl Lewis x glycoconjugates (SLex) on white blood cells and their interaction with E- and P-selectins on activated endothelial cells. E-selectin has additionally been shown to interact with the sialyl Lewis a (SLea) epitope. Human ST3Gal III codes for an α2,3-sialyltransferase involved in the biosynthesis of both SLea and SLex epitopes, although the latter with a lower efficiency. We have cloned and sequenced human ST3Gal III gene transcripts from human peripheral blood leukocytes, covering the coding region of this gene. Within our clones we isolated 19 different transcripts with a wide variety of deletions from 45 to 896 nucleotides, and insertions of 26 to 173 nucleotides. Among the insertions we identified two new exons (E3, E6). In order to map and characterise the ST3Gal III gene we used the GenBank database and “computer-cloned” and characterised the genomic organisation of the ST3Gal III gene. The coding sequences of the ST3Gal III gene stretch over a gene sequence of approximately 223 Kb comprised of 15 exons. RT-PCR and laser-induced fluorescent capillary electrophoresis (LIF-CE) were used to examine the expression of this gene in twenty-one human tissues, which showed a highly specific tissue expression pattern. Neural and muscular tissues showed the most complex patterns and were distinctly different from all other tissues examined. Published in 2003.

sialyltransferase ST3Gal III transcripts alternative splicing capillary electrophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S, Paulson JC, ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex, Science 250, 1130–2 (1990).Google Scholar
  2. 2.
    Tyrrell D, James P, Rao N, Foxall C, Abbas S, Dasgupta F, Nashed M, Hasegawa A, Kiso M, Asa D, et al., Structural requirements for the carbohydrate ligand of E-selectin, Proc Natl Acad Sci USA 88, 10372–6 (1991).Google Scholar
  3. 3.
    Polley MJ, Phillips ML, Wayner E, Nudelman E, Singhal AK, Hakomori S, Paulson JC, CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x, Proc Natl Acad Sci USA 88, 6224–8 (1991).Google Scholar
  4. 4.
    Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL, A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1, J Biol Chem 266, 14869–72 (1991).Google Scholar
  5. 5.
    Iwai K, Ishikura H, Kaji M, Sugiura H, Ishizu A, Takahashi C, Kato H, Tanabe T, Yoshiki T, Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium, Int J Cancer 54, 972–7 (1993).Google Scholar
  6. 6.
    Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Suzuki H, Okamoto T, Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells, Br J Cancer 86, 161–7 (2002).Google Scholar
  7. 7.
    Eaton D, Hawkins RE, Cimetidine in colorectal cancer‐are the effects immunological or adhesion-mediated? Br J Cancer 86, 159–60 (2002).Google Scholar
  8. 8.
    Paulson JC, Colley KJ, Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation, J Biol Chem 264, 17615–8 (1989).Google Scholar
  9. 9.
    Datta AK, Paulson JC, The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc, J Biol Chem 270, 1497–500 (1995).Google Scholar
  10. 10.
    Datta AK, Paulson JC, Sialylmotifs of sialyltransferases, Indian J Biochem Biophys 34, 157–65 (1997).Google Scholar
  11. 11.
    Datta AK, Sinha A, Paulson JC, Mutation of the sialyltransferase Ssialylmotif alters the kinetics of the donor and acceptor substrates, J Biol Chem 273, 9608–14 (1998).Google Scholar
  12. 12.
    Datta AK, Chammas R, Paulson JC, Conserved cysteines in the sialyltransferase sialylmotifs form an essential disulfide bond, J Biol Chem 276, 15200–7 (2001).Google Scholar
  13. 13.
    Breton C, Imberty A, Structure/function studies of glycosyltransferases, Curr Opin Struct Biol 9, 563–71 (1999).Google Scholar
  14. 14.
    Kitagawa H, Mattei MG, Paulson JC, Genomic organization and chromosomal mapping of the Gal beta 1,3GalNAc/Gal beta 1,4GlcNAc alpha 2,3-sialyltransferase, J Biol Chem 271, 931–8 (1996).Google Scholar
  15. 15.
    Kitagawa H, Paulson JC, Cloning of a novel alpha 2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups, J Biol Chem 269, 1394–401 (1994a).Google Scholar
  16. 16.
    Okajima T, Fukumoto S, Miyazaki H, Ishida H, Kiso M, Furukawa K, Urano T, Molecular cloning of a novel alpha2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids, J Biol Chem 274, 11479–86 (1999).Google Scholar
  17. 17.
    Kitagawa H, Paulson JC, Cloning and expression of human Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase, Biochem Biophys Res Commun 194, 375–82 (1993).Google Scholar
  18. 18.
    Hansson GC, Zopf D, Biosynthesis of the cancer-associated sialyl-Lea antigen, J Biol Chem 260, 9388–92 (1985).Google Scholar
  19. 19.
    Zopf D, Hansson GC, The chemical basis for expression of the sialyl-Le(a) antigen, Adv Exp Med Biol 228, 657–76 (1988).Google Scholar
  20. 20.
    Bengtson P, Larson C, Lundblad A, Larson G, Pahlsson P, Identification of a missense mutation (G329A;Arg(110) —> GLN) in the human FUT7 gene, J Biol Chem 276, 31575–82 (2001).Google Scholar
  21. 21.
    Wagers AJ, Stoolman LM, Kannagi R, Craig R, Kansas GS, Expression of leukocyte fucosyltransferases regulates binding to E-selectin: Relationship to previously implicated carbohydrate epitopes, J Immunol 159, 1917–29 (1997).Google Scholar
  22. 22.
    Toivonen S, Nishihara S, Narimatsu H, Renkonen O, Renkonen R, Fuc-TIX: A versatile alpha1,3-fucosyltransferase with a distinct acceptor-and site-specificity profile, Glycobiology 12, 361–8 (2002).Google Scholar
  23. 23.
    Kitagawa H, Paulson JC, Differential expression of five sialyltransferase genes in human tissues, J Biol Chem 269, 17872–8 (1994b).Google Scholar
  24. 24.
    Grahn A, Larson G, Identification of nine alternatively spliced alpha 2,3-sialyltransferase, ST3Gal IV, transcripts and analysis of their expression by RT-PCR and laser-induced fluorescent capillary electrophoresis (LIF-CE) in twenty-one human tissues, Glycoconj J 18, 759–67 (2001).Google Scholar
  25. 25.
    Modrek B, Resch A, Grasso C, Lee C, Genome-wide detection of alternative splicing in expressed sequences of human genes, Nucleic Acids Res 29, 2850–9 (2001).Google Scholar
  26. 26.
    Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S, Reich J, Bork P, EST comparison indicates 38% of humanmRNAs contain possible alternative splice forms, FEBS Lett 474, 83–6 (2000).Google Scholar
  27. 27.
    Breathnach R, Chambon P, Organization and expression of eucaryotic split genes coding for proteins, Annu Rev Biochem 50, 349–83 (1981).Google Scholar
  28. 28.
    Reed R, Initial splice-site recognition and pairing during premRNA splicing, Curr Opin Genet Dev 6, 215–20 (1996).Google Scholar
  29. 29.
    Kozak M, At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells, J Mol Biol 196, 947–50 (1987).Google Scholar
  30. 30.
    Smith CW, Valcarcel J, Alternative pre-mRNA splicing: The logic of combinatorial control, Trends Biochem Sci 25, 381–8 (2000).Google Scholar
  31. 31.
    Burger PC, Lotscher M, Streiff M, Kleene R, Kaissling B, Berger EG, Immunocytochemical localization of alpha2,3(N)-sialyltransferase (ST3Gal III) in cell lines and rat kidney tissue sections: Evidence for golgi and post-golgi localization, Glycobiology 8, 245–57 (1998).Google Scholar
  32. 32.
    Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC, Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide, J Biol Chem 264, 17619–22 (1989).Google Scholar
  33. 33.
    Grabenhorst E, Conradt HS, The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi, J Biol Chem 274, 36107–16 (1999).Google Scholar
  34. 34.
    de Vries T, Srnka CA, Palcic MM, Swiedler SJ, van den Eijnden DH, Macher BA, Acceptor specificity of different length constructs of human recombinant alpha 1,3/4-fucosyltransferases. Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity, J Biol Chem 270, 8712–22 (1995).Google Scholar
  35. 35.
    Nichols BJ, Pelham HR, SNAREs and membrane fusion in the Golgi apparatus, Biochim Biophys Acta 1404, 9–31 (1998).Google Scholar
  36. 36.
    Taniguchi A, Matsumoto K, Down-regulation of human sialyltransferase gene expression during in vitro human keratinocyte cell line differentiation, Biochem Biophys Res Commun 243, 177–83 (1998).Google Scholar
  37. 37.
    Wen DX, Svensson EC, Paulson JC, Tissue-specific alternative splicing of the beta-galactoside alpha 2,6-sialyltransferase gene, J Biol Chem 267, 2512–8 (1992).Google Scholar
  38. 38.
    Taniguchi A, Kaneta R, Morishita K, Matsumoto K, Gene structure and transcriptional regulation of human Gal beta1,4(3) GlcNAc alpha2,3-sialyltransferase VI (hST3Gal VI) gene in prostate cancer cell line, Biochem Biophys Res Commun 287, 1148–56 (2001).Google Scholar
  39. 39.
    Kapitonov D, Bieberich E, Yu RK, Combinatorial PCR approach to homology-based cloning: Cloning and expression of mouse and human GM3-synthase, Glycoconj J 16, 337–50 (1999).Google Scholar
  40. 40.
    Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, Nakamura M, Inokuchi J, Sanai Y, Saito M, Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase, J Biol Chem 273, 31652–5 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ammi Grahn
    • 1
  • Giti Shah Barkhordar
    • 1
  • Göran Larson
    • 1
  1. 1.Institute of Laboratory Medicine, Department of Clinical Chemistry and Transfusion MedicineSahlgrenska University HospitalGöteborgSweden

Personalised recommendations