Journal of Atmospheric Chemistry

, Volume 45, Issue 3, pp 231–243 | Cite as

The Effect of Temperature and Humidity on the Reaction of Ozone with Combustion Soot: Implications for Reactivity near the Tropopause

  • A. R. Chughtai
  • J. M. Kim
  • D. M. Smith


The effect of temperature (296–238 K) on the reaction of combustion soot (n-hexane) with ozone at low concentration (6–8 ppm) has been measured. Long optical path FTIR spectroscopy has revealed the rate law for ozone loss beyond initial stages, second order in O3, to be the same over this range of conditions. The reaction rate is 3.5 times lower at 238 K than at 296 K, and reveals an activation energy of 12.9 ± 0.5 kJ mol−1. The effect of humidity on the reaction has been estimated using its recently determined rate law dependence (p0.2). These data, differing from O3 reaction kinetics obtained from other types of carbonaceous particles used as surrogates for atmospheric soot, have implications for the role of combustion soot in atmospheric chemistry. Any involvement of aircraft soot in ozone depletion near the tropopause, for example, should be estimated using these temperature and humidity dependences.

FTIR humidity low temperature ozone soot tropopause heterogeneous reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhter, M. S., Chughtai, A. R., and Smith, D. M., 1984: Reaction of hexane soot with NO2/N2O4, J. Phys. Chem. 88, 5334-5342.Google Scholar
  2. Akhter, M. S., Chughtai, A. R., and Smith, D.M., 1985: The structure of hexane soot I: Spectroscopic studies, Appl. Spectrosc. 39(1), 143-153.Google Scholar
  3. Akhter, M. S., Chughtai, A. R., and Smith, D. M., 1991: Spectroscopic studies of oxidized soots, Appl. Spectrosc. 45(4), 653-665.Google Scholar
  4. Bekki, S., 1997: On the possible role of aircraft generated soot in the middle latitude ozone depletion, J. Geophys. Res. 102(D9), 10,751-10,758.Google Scholar
  5. Bekki, S., David, C., Law, K., Smith, D. M., Coelho, D., Thovert, J.-F., and Adler, P. M., 2000: Uptake on fractal particles 2. Applications, J. Geophys. Res. 105, 3917-3928.Google Scholar
  6. Benson, S.W. and Axworthy, A. E., 1957: Mechanism of gas phase thermal decomposition of ozone, J. Chem. Phys. 26, 1718-1726.Google Scholar
  7. Blake, D. F. and Kato, K., 1995: Latitudinal distribution of black carbon soot in the upper troposphere and lower stratosphere, J. Geophys. Res. 100(D4), 7195-7202.Google Scholar
  8. Chughtai, A. R., Jassim, J. A., Peterson, J. A., Stedman, D. H., and Smith, D.M., 1991: Spectroscopic and solubility characteristics of oxidized soots, Aerosol Sci. Technol. 15, 112-126.Google Scholar
  9. Chughtai, A. R., Atteya, M.M. O., Kim, J., Konowalchuk, B. K., and Smith, D.M., 1998: Adsorption and adsorbate interaction at soot particle surfaces, Carbon 36, 1573-1589.Google Scholar
  10. Chughtai, A. R., Kim, J. M., and Smith, D. M., 2002: The effect of air/fuel ratio on properties and reactivity of combustion soots, J. Atmos. Chem. 43, 21-43.Google Scholar
  11. Dietz, V. R. and Bitner, J. L., 1972: The reaction of ozone with adsorbent charcoal, Carbon 10, 145-154.Google Scholar
  12. Dietz, V. R. and Bitner, J. L., 1973: Interaction of ozone with adsorbent charcoals, Carbon 11, 393-401.Google Scholar
  13. Disselkamp, R. S., Carpenter, M. A., Cowin, J. P., Berkowitz, C. M., Chapman, E. G., Zaveri, R. A., and Laulainen, N. S., 2000: Ozone loss in soot aerosols, J. Geophys. Res. 105(D8), 9767-9771.Google Scholar
  14. Donnet, J. B. and Ehrburger, P., 1970: Etude cinetique de l'oxydation d'un noir au four par l'ozone en milieu aqueux, Carbon 8, 697-702.Google Scholar
  15. Donnet, J. B., Ehrburger, P., and Voet, A., 1972: Etude du mecanisme d'oxydation des noirs de carbone par l'ozone en milieu aqueux, Carbon 10, 737-746.Google Scholar
  16. Fendel, W. and Schmidt-Ott, A., 1993: Ozone depletion potential of carbon aerosol particles, J. Aerosol Sci. 24, S317-S318.Google Scholar
  17. Fendel, W., Matter, D., Burtscher, H., and Schmidt-Ott, A., 1995: Interaction between carbon or iron aerosol particles and ozone, Atmos. Environ. 29(9), 967-973.Google Scholar
  18. Finlayson-Pitts, B. J. and Pitts Jr., J. N., 2000: Chemistry of The Upper and Lower Atmosphere, Academic Press, San Diego, CA, pp. 159-160.Google Scholar
  19. Gao, R. S., Karcher, B., Keim, E. R., and Fahey, D. W., 1998: Constraining the heterogeneous loss of O3 on soot particles with observations in jet engine exhaust plumes, Geophys. Res. Lett. 25, 3323-3326.Google Scholar
  20. Jacob, D. J., 2000: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ. 34, 2131-2159.Google Scholar
  21. Jans, U. and Hoigne, J., 2000: Atmospheric water: Transformation of ozone into OH radicals by sensitized photo reactions on black carbon, Atmos. Environ. 34, 1069-1085.Google Scholar
  22. Kamm, S., Moehler, O., Naumann, K.-H., Saathoff, H., and Schurath, U., 1999: The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ. 33, 4651-4661.Google Scholar
  23. Kamm, S., 2000: Kinetic investigations of the oxidation of soot aerosol particles using ESR and FTIR spectroscopy, Wissensch. Ber.-Forsch. Karlsruhe 148, i-iv.Google Scholar
  24. Karcher, B., 1997: Heterogeneous chemistry in aircraft wakes: Constraints for uptake coefficients, J. Geophys. Res. 102(D15), 19,119-19,135.Google Scholar
  25. Kinney, C. R. and Friedman, L. D., 1952: Ozonation studies of coal constitution, J. Amer. Chem. Soc. 74, 57-61.Google Scholar
  26. Kotzick, R., Panne, U., and Niessner, R., 1997: Changes in condensation properties of ultrafine carbon particles subjected to oxidation by ozone, J. Aerosol. Sci. 28, 725-735.Google Scholar
  27. Lary, D. J., Lee, A. M., Toumi, R., Newchurch, M. J., Pirre, M., and Renard, J. B, 1997: Carbon aerosols and atmospheric photochemistry, J. Geophys. Res. 102(D3), 3671-3682.Google Scholar
  28. Lary, D. J., Shallcross, D. E., and Toumi, R., 1999: Carbonaceous aerosols and their potential role in atmospheric chemistry, J. Geophys. Res. 104(D13), 15,929-15,940.Google Scholar
  29. Longfellow, C. A., Ravishankara, A. R., and Hanson, D. R., 2000: Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3 and N2O5, J. Geophys. Res. 105(D19), 24,345-24,350.Google Scholar
  30. Lynch, R. T., Chughtai, A. R., and Smith, D. M., 1995: Upgrading older FTIR spectrometer systems, Amer. Lab. 27, 20N-20Q.Google Scholar
  31. Moehler, O., Naumann, K.-H., Saathoff, H., and Schurath, U., 1997: The influence of soot surface reactions on the ozone and NO?xchemistry, J. Aerosol Sci. 28, S309-S310.Google Scholar
  32. Moulik, M. D. and Milford, J. B., 1999: Factors influencing ozone chemistry in subsonic aircraft plumes, Atmos. Environ. 33, 869-880.Google Scholar
  33. Poeschl, U., Letzel, T., Schauer, C., and Niessner, R., 2001: Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo(a)pyrene: O3 and H2O adsorption, benzo(a)pyrene degradation, and atmospheric implications, J. Phys. Chem A 105, 4029-4041.Google Scholar
  34. Puri, B. R. and Arora, V. M., 1978: Interaction of carbons with dry ozonized oxygen, Indian J. Chem. 16A, 471-474.Google Scholar
  35. Rogaski, C. A., Golden, D. M., and Williams, L. R., 1997: Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3 ??and H2SO4, Geophys. Res. Lett. 24, 381-384.Google Scholar
  36. Saathoff, H., Kamm, S., Moehler, O., Naumann, K.-H., and Schurath, U., 1998: Kinetics and mechanism of the heterogeneous interaction of ozone with soot aerosol, J. Aerosol Sci. 29, S889-S890.Google Scholar
  37. Sergides, C. A., Jassim, J. A., Chughtai, A. R., and Smith, D.M., 1987: The structure of hexane soot. Part III: Ozonation studies, Appl. Spectrosc. 41, 482-492.Google Scholar
  38. Silver, D. M., deHaas, N., and Linevsky, M. J., 1989: Reactions of carbonaceous smoke particles with atmospheric ozone, Aerosol Sci. Technol. 10, 332-336.Google Scholar
  39. Smith, D. M., Welch, W. F., Jassim, J. A., Chughtai, A. R., and Stedman, D. H., 1988: Soot-ozone reaction kinetics: Spectroscopic and gravimetric studies, Appl. Spectrosc. 42, 1473-1482.Google Scholar
  40. Smith, D. M. and Chughtai, A. R., 1995: The surface structure and reactivity of black carbon, Colloids Surf. A 105, 47-77.Google Scholar
  41. Smith, D. M. and Chughtai, A. R., 1996: Reaction kinetics of ozone at low concentrations with n-hexane soot, J. Geophys. Res. 101(D14), 19,606-19,620.Google Scholar
  42. Smith, D. M. and Chughtai, A. R., 1997: Photochemical effects in the heterogeneous reaction of soot with ozone at low concentrations, J. Atmos. Chem. 26, 77-91.Google Scholar
  43. Stephens, S., Rossi, M. J., and Golden, D. M., 1986: The heterogeneous reaction of ozone on carbonaceous surfaces, Int. J. Chem. Kinet. 19, 1133-1149.Google Scholar
  44. Stephens, S. L., Birks, J. W., and Calvert, J. G., 1989: Ozone as a sink for atmospheric carbon aerosols today and following nuclear war, Aerosol Sci. Technol. 10, 326-331.Google Scholar
  45. Strawa, A. W., Drdla, K., Ferry, G. V., Verma, S., Pueschel, R. F., Yasuda, M., Salawitch, R. J., Gao, R. S., Howard, S. D., Bui, P. T., Loewenstein, M., Elkins, J. W., Perkins, K. K., and Cohen, R., 1999: Carbonaceous aerosol (soot) measured in the lower stratosphere during POLARIS and its role in stratospheric photochemistry, J. Geophys. Res. 104(D21), 26,753-26,766.Google Scholar
  46. Wei, C.-F., Larson, S. M., Patten, K. O., and Wuebbles, D. J., 2001: Modeling of ozone reactions on aircraft-related soot in the upper troposphere and lower stratosphere, Atmos. Environ. 35, 6167-6180.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. R. Chughtai
    • 1
  • J. M. Kim
    • 1
  • D. M. Smith
    • 1
  1. 1.Department of Chemistry and Biochemistry, F.W. Olin, Room 202University of DenverDenverU.S.A

Personalised recommendations