Journal of Philosophical Logic

, Volume 32, Issue 3, pp 225–244 | Cite as

Some Supervaluation-based Consequence Relations

  • Philip Kremer
  • Michael Kremer

Abstract

In this paper, we define some consequence relations based on supervaluation semantics for partial models, and we investigate their properties. For our main consequence relation, we show that natural versions of the following fail: upwards and downwards Lowenheim–Skolem, axiomatizability, and compactness. We also consider an alternate version for supervaluation semantics, and show both axiomatizability and compactness for the resulting consequence relation.

consequence relations partial models supervaluations three-valued logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Chang, C. C. and Keisler, H. J.: 1990, Model Theory, 3rd edn, North-Holland, Amsterdam.Google Scholar
  2. Dummett, M.: 1970, Wang's paradox, first delivered at SUNY Bluffalo in 1970. First published in Synthese 30 (1975), 301–324. Reprinted in M. Dummett (1978), Truth and Other Enigmas, Harvard University Press, Cambridge.Google Scholar
  3. Fine, K.: 1975, Vagueness, truth, and logic, Synthese 30, 265–300.CrossRefGoogle Scholar
  4. Kremer, M.: 1986, Logic and truth, Ph.D. dissertation, University of Pittsburgh.Google Scholar
  5. Kremer, M.: 1988, Kripke and the logic of truth, J. Philos. Logic 17, 225–278.CrossRefGoogle Scholar
  6. Kripke, S.: 1975, Outline of a theory of truth, J. Philos. 72, 690–716.Google Scholar
  7. Lewis, D.: 1970, General semantics, Synthese 22, 18–67.CrossRefGoogle Scholar
  8. Martin, R. L. and Woodruff, P. W.: 1975, On representing ‘True-in L’ in L, Philosophia 5, 217–221.Google Scholar
  9. McGee, V.: 1991, Truth, Vagueness and Paradox, Hackett Publishing Company, Indianapolis.Google Scholar
  10. Mehlberg, H.: 1958, The Reach of Science, University of Toronto Press, Toronto and Oxford University Press, Oxford.Google Scholar
  11. Scott, D.: 1975, Combinators and classes, in λ-calculus and Computer Science Theory, Lecture Notes in Comput. Sci. 37, Springer-Verlag, Berlin, pp. 1–26.Google Scholar
  12. Thomason, S. K.: 1973, A new representation of S5, Notre Dame J. Formal Logic 14, 281–284.Google Scholar
  13. van Fraassen, B.: 1966, Singular terms, truth-value gaps and free logic, J. Philos. 63, 481–495.Google Scholar
  14. van Fraassen, B.: 1968, Presupposition, implication and self-reference, J. Philos. 65, 136–152.Google Scholar
  15. van Fraassen, B.: 1971, Formal Semantics and Logic, Macmillan, New York.Google Scholar
  16. Woodruff, P.: 1984, On supervaluations in free logic, J. Symbolic Logic 49, 943–950.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Philip Kremer
    • 1
  • Michael Kremer
    • 2
  1. 1.Department of PhilosophyMcMaster UniversityUSA
  2. 2.Department of PhilosophyUniversity of Notre DameUSA

Personalised recommendations