Journal of Chemical Ecology

, Volume 29, Issue 6, pp 1479–1488 | Cite as

Chemical Cues Identify Gender and Individuality in Giant Pandas (Ailuropoda melanoleuca)

  • Lee HageyEmail author
  • Edith MacDonald


The Giant panda communicates with conspecifics by depositing a mixture of volatile compounds (called scent marks) on trees and rocks. Using mass spectrometry, we identified 951 chemical components from scent glands, urine, vaginal secretions, and scent marks made by pandas. The scent marks of the two genders contained a similar array of chemicals but varied in concentration; specifically, males possessed a significantly greater amount of short chain fatty acids (F(1, 29) = 18.4, P = 0.002). Using stepwise discriminate analysis on the relative proportions of a subset of these chemicals, it was possible to classify gender (94% for males and females) and individuality (81% for males and 91% for females) from scent marks. The power to identify individual males was reduced due to the relatedness of two subjects. By cracking the identity code of Giant panda communication, we show insights into how these animals can match individuals with unique chemical profiles. Since radiocollaring is currently banned in China, the techniques described in this paper give field biologists a new means to identify and track pandas in the wild.

Giant panda scent mark scent communication olfaction mass spectrometry individual identity urine analysis short chain fatty acids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albone, E. S. 1984. Mammalian Semiochemisty: The Investigation of Chemical Signalsc Between Mammals. Wiley, New York.Google Scholar
  2. Albone, E. S. and Eglinton, G. 1974. The anal sac secretion of the red fox (Vulpe vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14:387–400.Google Scholar
  3. Barnard, C. J. and Burk, K. 1979. Dominance hierarchies and the evolution of individual recognition. J. Theor. Biol. 81:65–73.Google Scholar
  4. Ehman, K. D. and Scott, M. E. 2001. Urinary odour preferences of MHC congenic female mice, Mus domesticus: Implications for kin recognition and detection of parasitized males. Anim. Behav. 62:781–789.Google Scholar
  5. Gosden, P. E. and Ware, G. C. 1976. The aerobic bacterial flora of the anal sac of the Red fox. J. Appl. Bacteriol. 41:271–275.Google Scholar
  6. Kleiman, D. G. 1983. Ethology and reproduction of captive Giant pandas (Ailuropoda melanoleuca). A. Tierpsychol. 62:1–46.Google Scholar
  7. Lawson, R. E., Putnam, R. J., and Fielding, A. H. 2001. Chemical communication in Eurasian deer (Cervidae): Do individual odours also code for attributes? J. Zool. (Lond.) 253:91–99.Google Scholar
  8. Preti, G., Muetterties, E. L., Furman, J. M., Kennelly, J. J., and Johns, B. E. 1976. The anal sac secretion of dog (Canis familiaris) and coyote (Canis latrans) anal sacs. J. Chem. Ecol. 2:177–186.Google Scholar
  9. Rasmussen, L. E. L., Lee, T.D., Zhang, A., Roelofs, W.D., and Daves, G. D. 1997. Purification, identification, concentration, and bioactivity of (Z)-7-dodecen-1-yl acetate: Sex pheromone of the female Asian elephant, Elephas maximus.Chem. Senses 22:417–437.Google Scholar
  10. Salamon, M. and Davies, N. W. 1998. Identification and variation of volatile compounds in sternal gland secretions of male koalas (Phascolarctos cinereus). J. Chem. Ecol. 24:1659–1675.Google Scholar
  11. Schaller, G. B., Hu, J., Pan, W., and Zhu, J. 1985. Giant Pandas of Wolong. University of Chicago Press, Chicago.Google Scholar
  12. Singer, E. G., Agosta, W. C., O'Connel, R. J., Pfaffmann, C., Bowen, D. V., and Field, F. H. 1976. Dimethyldisulfide: An attractant pheromone in hamster vaginal secretion. Science 191:948–950.Google Scholar
  13. Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A., and Abbott, D. H. 2001. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 26:449–458.Google Scholar
  14. Swaisgood, R. R., Lindburg, D. G., and Zhou, X. 1999. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57:1045–1053.Google Scholar
  15. Swaisgood, R. R., Lindburg, D. G., White, A. M., Zhang, H., and Zhou, X. in press. Chemical communication in giant pandas: Experimentation and application, in D. G. Lindburg and K. Baronga (Eds.). Biology of the Giant Panda. University of California Press, California.Google Scholar
  16. Swaisgood, R. R., Lindburg, D. G., Zhou, X., and Owen, M. A. 2000. The effects of sex, reproductive condition and context on discrimination of conspecific odors by giant pandas. Anim. Behav. 60:227–237.Google Scholar
  17. White, A. M., Swaisgood, R. R., and Zhang, H. in press. Chemical communication in giant pandas: The role of signaler and assessor age J. Zool. (Lond.) Google Scholar
  18. Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A. 1982. Chemosensory recognition of the phenotypes determined by the T1a and H-2K regions of chromosome 17 of the mouse. Proc. Natl. Acad. Sci. U.S.A. 79:7828–7831.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  1. 1.Center for Reproduction of Endangered Species, Zoological Society of San DiegoSan DiegoUSA

Personalised recommendations