Solar Physics

, Volume 214, Issue 2, pp 375–396 | Cite as

Temporal variability of the flare index (1966–2001)

  • Atila Özgüç
  • Tamer Ataç
  • Ján Rybák


A brief description and study of the temporal variability of the flare index over the epoch of almost 4 cycles (1966–2001) are presented. Using Fourier and wavelet transforms the long- and the intermediate-term periodicities in the daily flare index data for the total surface and for the northern and the southern hemispheres of the Sun are given in detail. A significant variability was found for all periods including those of 150 days and 1.3 years. The wavelet transform results show that the occurrence of flare index power is highly intermittent in time. A comparison of the results of the Fourier transform and the time-period wavelet transform of the flare index time series has clarified the importance of different periodicities, whether they are or are not the harmonics of the basic ones, as well as the temporal location of their occurrence.


Fourier Time Series Fourier Transform Flare Southern Hemisphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akioka, M., Kubata, J., Suzuki, M., Ichimoto, K., and Tohmura, I.: 1987, Solar Phys. 112, 313.Google Scholar
  2. Ataç, T.: 1987, Astrophys. Space Sci. 135, 201.Google Scholar
  3. Ataç, T. and Özgüç, A.: 1998, Solar Phys. 180, 397.Google Scholar
  4. Ataç, T. and Özgüç, A.: 2001, Solar Phys. 198, 399.Google Scholar
  5. Bai, T.: 1992, Astrophys. J. 397, 584.Google Scholar
  6. Bai, T. and Cliver, E. W.: 1990, Astrophys. J. 363, 299.Google Scholar
  7. Bai, T. and Sturrock, P. A.: 1987, Nature 327, 601.Google Scholar
  8. Bai, T. and Sturrock, P. A.: 1991, Nature 352, 360.Google Scholar
  9. Ballester, J. L., Oliver, R., and Baudin, F.: 1999, Astrophys. J. 522, L153.Google Scholar
  10. Bloomfield, P.: 1976, Fourier Analysis of Time Series: An Introduction, John Wiley and Sons, New York.Google Scholar
  11. Bogart, R. S. and Bai, T.: 1985, Astrophys. J. 229, L51.Google Scholar
  12. Caballero, R. and Valdés-Galicia, J. F.: 2001, Adv. Space Res. 27, 583.Google Scholar
  13. Daubechies, I.: 1990, IEEE Transactions on Information Theory 36, 961.Google Scholar
  14. de Jager, O. C.: 1987, Ph. D. Thesis, Potchefstroom University, Potchefstroom.Google Scholar
  15. Delache, P., Laclare, F., and Sadsaoud, H.: 1985, Nature 317, 416.Google Scholar
  16. Dennis, B. R.: 1985, Solar Phys. 100, 465.Google Scholar
  17. Dröge, W., Gibbs, K., Grunsfeld, J. M., Meyer, P., and Newport, B. J.: 1990, Astrophys. J. Suppl. 73, 297.Google Scholar
  18. Hady, A. A.: 2002, Planet. Space Sci. 50, 89.Google Scholar
  19. Horne, J. H. and Baliunas, S. L.: 1986, Astrophys. J. 302, 757.Google Scholar
  20. Howe, R., Christensen-Dalsgaard, J., Hill, F. et al.: 2000, Science 287, 2456.Google Scholar
  21. Joshi, A.: 2001, Solar Phys. 198, 149.Google Scholar
  22. Kane, R. P.: 2002, Solar Phys. 207, 17.Google Scholar
  23. Kleczek, J.: 1952, Publ. Czech Centr. Astron. Inst., No. 22.Google Scholar
  24. Krivova, N. A. and Solanki, S. K.: 2002, Astron. Astrophys. 394, 701.Google Scholar
  25. Kumar, P. and Faufoula-Georgiou, E.: 1997, Rev. Geophys. 35, 385.Google Scholar
  26. Lean, J. and Brueckner, G. E.: 1989, Astrophys. J. 337, 568.Google Scholar
  27. Li, K. J., Wang, J. X., Xiong, S. Y., Liang, H. F., Yun, H. S., and Gu, X. M.: 2002, Astron. Astrophys. 383, 648.Google Scholar
  28. Lockwood, M.: 2001, J. Geophys. Res. 106, 16021.Google Scholar
  29. Lou, Y.: 2000, Astrophys. J. 540, 1102.Google Scholar
  30. Oliver, R., Carbonelli, M., and Ballester, J. L.: 1992, Solar Phys. 137, 141.Google Scholar
  31. Oliver, R., Ballester, J. L., and Baudin, F.: 1998, Nature 394, 552.Google Scholar
  32. Özgüç, A. and Ataç, T.: 1989, Solar Phys. 123, 357.Google Scholar
  33. Özgüç, A. and Ataç, T.: 1994, Solar Phys. 150, 339.Google Scholar
  34. Özgüç, A. and Ataç, T.: 1996, Solar Phys. 163, 183.Google Scholar
  35. Özgüç, A., Ataç, T., and Rybák, J.: 2002, J. Geophys. Res. 107, 10.1029/ 2001JA009080.Google Scholar
  36. Özgüç, A., Tulunay, Y., and Ataç, T.: 1998, Adv. Space Res. 22, 139.Google Scholar
  37. Özgüç, A., Ataç, T., Tulunay, Y., and Stanislavska, I.: 1998, Studia Geophys. Geod. 42, 112.Google Scholar
  38. Paularena, K. I., Szabo, A., and Richardson, J. D.: 1995, Geophys. Res. Lett. 22, 3001.Google Scholar
  39. Rieger, E., Share, G. H., Forrest, D. J., Kanbach, G., Reppin, C., and Chupp, E. L.: 1984, Nature 312, 623.Google Scholar
  40. Ruzmaikin, A.: 2001, Space Sci. Rev. 95, 43.Google Scholar
  41. Rybák, J., Antalová, A., Storini, M.: 2000, in A. Wilson (ed.), The Solar Cycle and Terrestrial Climate, ESA SP-463, 419.Google Scholar
  42. Scargle, J. D.: 1982, Astrophys. J. 263, 835.Google Scholar
  43. Szabo, A., Lepping, R. P., and King, J. H.: 1995, Geophys. Res. Lett. 22, 1845.Google Scholar
  44. Torrence, C. and Compo, G. P.: 1998, Bul. Am. Meteor. Soc. 79, 61.Google Scholar
  45. Tripathy, S. C., Kumar, B., Jain, K., and Bhatnagar, A.: 2000, J. Astrophys. Astron. 21, 357.Google Scholar
  46. Veretenenko, S. V. and Pudovkin, M. I.: 1999, J. Atmospheric Solar-Terrest. Phys. 61, 521.Google Scholar
  47. Verma, V. K., Joshi, G. C., Uddin, W., and Palival, D. C.: 1991, Astron. Astrophys. 90, 83.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Atila Özgüç
    • 1
  • Tamer Ataç
    • 1
  • Ján Rybák
    • 2
  1. 1.Bogaziçi University, Kandilli Observatory and Earthquake Research InstituteÇengelköyTurkey
  2. 2.Astronomical InstituteSlovak Academy of ScienceTatranská LomnicaSlovak Republic

Personalised recommendations