Advertisement

Applied Categorical Structures

, Volume 11, Issue 3, pp 287–312 | Cite as

On Colimits in Categories of Relations

  • Stefan Milius
Article

Abstract

We study (finite) coproducts and colimits of ω-chains in Rel(C), the 2-category of relations over a given category C. The former exist and are “the same” as in C provided that C is extensive. The latter do not exist for example in Rel(Set). However, the canonical construction of those colimits in the category of sets can be generalized to Rel(Set). The canonical cocone is shown to satisfy a 2-categorical universal property, namely that of an lax adjoint cooplimit. Sufficient conditions for any base category C to admit the construction are given.

A necessary and sufficient condition for the construction to yield colimits of ω-chains in the category of maps of Rel(C) is also given.

relation map (co)limit of ω-chains (co)products 2-categories initial algebra construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Herrlich, H. and Strecker, G. E.: Abstract and Concrete Categories, Wiley-Interscience Series in Pure Appl. Math., Wiley, 1990.Google Scholar
  2. 2.
    Borceux, F.: Handbook of Categorical Algebra 1, Encyclopedia Math. Appl. 50, Cambridge University Press, 1994.Google Scholar
  3. 3.
    Carboni, A., Lack, S. and Walters, R. F. C.: Introduction to extensive and distributive categories, Journal of Pure and Applied Algebra 84 (1993), 145–158.Google Scholar
  4. 4.
    Freyd, P. J. and Scedrov, A.: Categories, Allegories, North-Holland, Amsterdam, 1990.Google Scholar
  5. 5.
    Jayewardene, R. and Wyler, O.: Categories of relations and functional relations, Applied Categorical Structures 8(1/2) (2000), 279–305.Google Scholar
  6. 6.
    Kelly, G. M.: A note on relations relative to a factorization system, in A. Carboni et al. (eds.), Category Theory, Como, 1990, Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, pp. 249–262.Google Scholar
  7. 7.
    Klein, A.: Relations in categories, Illinois Journal of Mathematics 14 (1970), 536–550.Google Scholar
  8. 8.
    Lawvere, F. W.: Metric spaces, generalized logic, and closed categories, Rendiconti del Seminario Matematico e Fisico di Milano 43 (1973), 135–166.Google Scholar
  9. 9.
    Meissen, J.: On bicategories of relations and pullback spans, Communications in Algebra 1(5) (1974), 377–401.Google Scholar
  10. 10.
    Milius, S.: Relations in categories, Master's thesis, York University, Toronto, Ontario, June 2000.Google Scholar
  11. 11.
    Pavlović, D.: Maps I: Relative to a factorization system, Journal of Pure and Applied Algebra 99 (1995), 9–34.Google Scholar
  12. 12.
    Pavlović, D.: Maps II: Chasing diagrams in categorical proof theory, J. IGPL 4(2) (1996), 159–194.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Stefan Milius
    • 1
  1. 1.Institute of Theoretical Computer ScienceTechnical UniversityBraunschweigGermany

Personalised recommendations