Optical and Quantum Electronics

, Volume 35, Issue 8, pp 811–824 | Cite as

Diode-pumped cw and Q-switched Nd:GdVO4 laser operating at 1.34 μm

  • J. Liu
  • B. Ozygus
  • J. Erhard
  • A. Ding
  • H. Weber
  • X. Meng
Article

Abstract

A diode-pumped 1.34 μm Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 μJ, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 μm was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 μJ, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.

diode-pumped intracavity SHG Nd:GdVO4 laser Q-switched 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnesi, A., G.C. Reali and P.G. Gobbi. IEEE J. Quantum Electron. 34 1297, 1998.Google Scholar
  2. Boldwin, G.D. IEEE J. Quantum Electron. 7 220, 1971.Google Scholar
  3. Czeranowsky, C., M. Schmidt, E. Heumann, G. Huber, S. Kutovoi and Y. Zavartsev. Opt. Commun. 205 361, 2002.Google Scholar
  4. Jensen, T., V.G. Ostroumov, J.P. Meyn, G. Huber, A.I. Zagumennyi and I.A. Shcherbakov. Appl. Phys. B 58 373, 1994.Google Scholar
  5. Li, C., J. Song, D. Shen, N.S. Kim, J. Lu and K. Ueda. Appl. Phys. B 70 471, 2000.Google Scholar
  6. Liu, J., Z. Shao, H. Zhang, X. Meng, L. Zhu and M. Jiang. Appl. Phys. B 69 241, 1999a.Google Scholar
  7. Liu, J., Z. Shao, H. Zhang, X. Meng, L. Zhu, J. Wang, Y. Liu and M. Jiang. Opt. Commun. 173 311, 2000.Google Scholar
  8. Liu, J., C.Q. Wang, C. Du, L. Zhu, H. Zhang, X. Meng, J. Wang, Z. Shao and M. Jiang. Opt. Commun., 188 155, 2001a.Google Scholar
  9. Liu, J., C.Q. Wang, J. Lü, G. Li, Z. Shao, J. Wang, Y. Liu and M. Jiang. Chin. Phys. Lett. 16 508, 1999b.Google Scholar
  10. Liu, J., C. Wang, C.Q. Wang, X. Meng, H. Zhang, L. Zhu, J. Wang, Z. Shao and M. Jiang. Appl. Phys. B 72 171, 2001b.Google Scholar
  11. Shen, D.Y., H.R. Yang, J.G. Liu, S.C. Tam, Y.L. Lam, W.J. Xie, J.H. Gu and K. Ueda. Appl. Phys. B 72 263, 2001.Google Scholar
  12. Siegman, A.E. Lasers, Univ. Sci. Books, Mill Valley, CA, 1008, 1986.Google Scholar
  13. Studenikin, P.A., A.I. Zagumennyi, Y.D. Zavartsev, P.A. Popov and I.A. Shcherbakov. Quantum Electron. 25 1162, 1995.Google Scholar
  14. Wagner, W.G. and B.A. Lengyel. J. Appl. Phys. 34 2040, 1963.Google Scholar
  15. Wang, C.Q., Y.T. Chow, L. Reekie, W.A. Gambling, H.J. Zhang, L. Zhu and X.L. Meng. Appl. Phys. B 70 769, 2000.Google Scholar
  16. Zagumennyi, A.I., V.G. Ostroumov, I.A. Shcherbakov, T. Jensen, J.P. Meyen and G. Huber. Sov. J. Quantum Electron. 22 1071, 1992.Google Scholar
  17. Zayhowski, J.J. and P.L. Kelley. IEEE J. Quantum Electron. 27 2220, 1991.Google Scholar
  18. Zhang, H., J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang and Y.T. Chow. J. Opt. Soc. Am. B 19 18, 2002.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • J. Liu
    • 1
  • B. Ozygus
    • 1
  • J. Erhard
    • 1
  • A. Ding
    • 1
  • H. Weber
    • 1
  • X. Meng
    • 2
  1. 1.Optisches Institut (Sekr. P 1-1)Technische Universität BerlinBerlinGermany
  2. 2.National Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations