Genetica

, Volume 118, Issue 2–3, pp 279–294 | Cite as

Population-Genetic Models of the Fates of Duplicate Genes

  • Bruce Walsh
Article

Abstract

The ultimate fate of a duplicated gene is that it either silenced through inactivating mutations or both copies are maintained by selection. This later fate can occur via neofunctionalization wherein one copy acquires a new function or by subfunctionalization wherein the original function of the gene is partitioned across both copies. The relative probabilities of these three different fates involve often very subtle iterations between of population size, mutation rate, and selection. All three of these fates are critical to the expansion and diversification of gene families.

evolution of new gene function gene families gene silencing neofunctionalization pseudogenes subfunctionalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allenbdorf, F.W., 1979. Rapid loss of duplicate gene expression by natural selection. Heredity 43: 247-258.Google Scholar
  2. Bailey, G.S., R.T.M. Poulter & P.A. Stockwell, 1978. Gene duplication in teraploid fish: model for gene silencing at unlinked duplicate loci. Proc. Natl. Acad. Sci. USA 75: 5575-5579.PubMedGoogle Scholar
  3. Christansen, F.B. & O. Frydenberg, 1977. Selection-mutation balance for two nonallelic recessives producing an inferior double homozygote. Am. J. Hum. Gene. 29: 195-207.Google Scholar
  4. Clark, A.G., 1994. Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91: 2950-2954.PubMedGoogle Scholar
  5. Ferris, S.D. & G.S. Whitt, 1977. Loss of duplicate gene expression after polyplodisation. Nature 265: 258-260.PubMedGoogle Scholar
  6. Ferris, S.D. & G.S. Whitt, 1979. Evolution of differential regulation of duplicate genes after polyplodization. J. Mol. Evol. 12: 267-317.PubMedGoogle Scholar
  7. Ferris, S.D., S.L. Portnoy & G.S. Whitt, 1979. The roles of speciation and divergence time in the loss of duplicate gene expression. Theoret. Pop. Biol. 15: 114-139.Google Scholar
  8. Fisher, R.A., 1935. The sheltering of lethals. Am. Nat. 69: 446-455.Google Scholar
  9. Force, A., M. Lynch, F.B. Pickett, A. Amores, Y. Yan & J. Postlethwait, 1999. Preservation of duplicate gnees by complementary, degenerative mutations. Genetics 151: 1531-1545.PubMedGoogle Scholar
  10. Haldane, J.B.S., 1933. The part played by recurrent mutation in evolution. Am. Nat. 67: 5-19.Google Scholar
  11. Hughes, M.K. & A.L. Hughes, 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol. Biol. Evol. 10: 1360-1369.PubMedGoogle Scholar
  12. Kimura, M. & J.L. King, 1979. Fixation of a deleterious allele at one of two 'duplicate' loci by mutation pressure and random drift. Proc. Natl. Acad. Sci. USA 76: 2858-2861.PubMedGoogle Scholar
  13. Li, W.-H., 1980. Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95: 237-258.PubMedGoogle Scholar
  14. Lynch, M. & A. Force, 2000. The origin of interspecific genomic incompatibility via gene duplication. Am. Nat. 156: 590-605.Google Scholar
  15. Lynch, M. & A. Force, 2000a. The probability of duplicate gene preservation by subfunctionalization. Genetics 154: 459-473.PubMedGoogle Scholar
  16. Lynch, M., M. O'Hely, B. Walsh & A. Force, 2001. The probability of preservation of a newly arisen gene duplicate. Genetics (in press).Google Scholar
  17. Maruyama, T. & N. Takahata, 1981. Numerical studies of the frequency trajectories in the process of fixation of null genes at duplicate loci. Heredity 46: 49-57.Google Scholar
  18. Nei, M., 1970. Accumulation of nonfunctional genes on sheltered chromosomes. Am. Nat. 104: 311-322.Google Scholar
  19. Nei, M. & A.K. Roychoudhury, 1973. Probability of fixation of nonfunctional genes at duplicate loci. Am. Nat. 107: 362-371.Google Scholar
  20. Ohno, S., 1970. Evolution by Gene Duplication. Springer, Heidelberg, Germany.Google Scholar
  21. Ohta, T., 1980. Evolution and Variation in Multigene Families. Springer, New York.Google Scholar
  22. Ohta, T., 1983. On the evolution of multigene families. Theoret. Pop. Biol. 23: 216-240.Google Scholar
  23. Ohta, T., 1987. Simulating evolution by gene duplication. Genetics 115: 207-213.PubMedGoogle Scholar
  24. Partridge, C.W.H. & N.H. Giles, 1963. Sedimentation behavior of adenylo-succinase formed by interallelic complementation in Neurospora cras. Nature 199: 304-305.PubMedGoogle Scholar
  25. Spofford, J.B., 1969. Heterosis and the evolution of duplications. Am. Nat. 103: 407-432.Google Scholar
  26. Takahata, N. & T. Maruyama, 1979. Polymorphism and loss of duplicate gene expression: a theoretical study with application to tetraploid fish. Proc. Natl. Acad. Sci. USA 76: 4521-4525.PubMedGoogle Scholar
  27. Walsh, J.B., 1985. How many processed pseudogenes are accumulated in a gene family? Genetics 110: 345-364.PubMedGoogle Scholar
  28. Walsh, J.B., 1987. Sequence-dependent gene conversion: can duplicated genes diverge fast enough to escape conversion? Genetics 117: 543-557.PubMedGoogle Scholar
  29. Walsh, J.B., 1995. How often do duplicated genes evolve new functions? Genetics 139: 421-428.PubMedGoogle Scholar
  30. Watterson, G.A., 1983. On the time for gene silencing at duplicate loci. Genetics 105: 745-766.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Bruce Walsh
    • 1
  1. 1.Departments of Ecology and Evolutionary Biology, Molecular and Cellular Biology, and Plant SciencesUniversity of ArizonaTucsonUSA

Personalised recommendations