, Volume 118, Issue 2–3, pp 117–121 | Cite as

The Emergence of a Synthetic Theory of Intron Evolution

  • Sandro J. de Souza


The debate on the origin and evolution of the intron/exon structure of eukaryotic genes has witnessed profound changes in the last 10 years. Concepts from both the introns-early and introns-late theories have merged into a new synthetic theory of intron evolution. Here I review the debate and discuss the perspectives for the future.

intron evolution introns-early introns-late module 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berget, S.M., C. Moore & P.A. Sharp, 1977. Spliced segments at the 5′ terminus of adenovirus-2 late mRNA. Proc. Natl. Acad. Sci. USA 74: 3171-3175.PubMedGoogle Scholar
  2. Bertolaet, B.L. & J.R. Knowles, 1995. Complementation of fragments of triose phosphate isomerase defined by exon boundaries. Biochemistry 34: 5736-5743.PubMedGoogle Scholar
  3. Blake, C.C.F., 1978. Do genes-in-pieces imply protein-in-pieces? Nature 273: 267-268.Google Scholar
  4. Buehner, M., G.C. Ford, D. Moras, K.W. Olsen & M.G. Rossman, 1973. D-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. Natl. Acad. Sci. USA 70: 3052-3064.PubMedGoogle Scholar
  5. Cavalier-Smith, T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34: 283-284.Google Scholar
  6. Chow, L.T., R.E. Gelimas, T.R. Broker & R.J. Roberts, 1977. An amazing sequence arrangement at the 5′ ends of adenovirus-2 messenger RNA. Cell 12: 1-8.PubMedGoogle Scholar
  7. Cornish-Bowden, A., 1985. Are introns structural elements or evolutionary debris? Nature 313: 434-435.Google Scholar
  8. De Souza, S.J., M. Long & W. Gilbert, 1996a. Introns and gene evolution. Genes Cells 1: 493-505.PubMedGoogle Scholar
  9. De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1996b. Intron positions correlate with modules boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93: 14632-14636.PubMedGoogle Scholar
  10. De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1997. The origin and evolution of introns: a debate. In: HMS Beagle: A Biomednet Publication (, vol. 1, issue # 1.Google Scholar
  11. De Souza S.J., W. Fischer, J. Logsdon, M. Long, N. Mortin & A. Stoltzfus, 1998. Toward a resolution of the introns early/late debate: only phase 0 introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094-5099.PubMedGoogle Scholar
  12. Dibb, N.J. & A.J. Newman, 1989. Evidence that introns arouse at proto-splice sites. EMBO J. 8: 2015-2021.PubMedGoogle Scholar
  13. Doolittle, W.F., 1978. Gene-in-pieces: were they ever together? Nature 272: 581-582.Google Scholar
  14. Dorit, R.L., L. Schoenbach & W. Gilbert, 1990. How big is the universe of exons? Science 250: 1377-1382.PubMedGoogle Scholar
  15. Fedorov, A. et al., 1992. Analysis of nonuniformity in intron phase distribution. Nucl. Acids Res. 20: 2553-2557.PubMedGoogle Scholar
  16. Fedorov, A., X. Cao, S. Saxonov, S.J. De Souza, S.W. Roy & W. Gilbert, 2001. Intron distribution difference for 276 ancient and 131 modern genes suggests the existence of ancient introns. Proc. Natl. Acad. Sci. USA 98: 13177-13182.PubMedGoogle Scholar
  17. Gilbert, W., 1978. Why genes in pieces. Nature 271: 501.Google Scholar
  18. Gilbert, W., 1986. The RNA World. Nature 319: 618.Google Scholar
  19. Gilbert, W., 1987. The Exon Theory of Genes. Cold Spring Harbor Symp. Quant. Biol. 52: 901-905.PubMedGoogle Scholar
  20. Gilbert, W. and S.J. De Souza, 1999. Introns and the RNA world, pp. 221-232 in The RNA World, edited by R.F. Gesteland, T.R. Cech & J.F. Atkins. Cold Spring Harbor Laboratory Press, Colds Spring Harbor, NY.Google Scholar
  21. Gilbert, W. & M. Glinias, 1993. On the ancient nature of introns. Gene 135: 137-144.PubMedGoogle Scholar
  22. Gilbert, W, S.J. De Souza & M. Long, 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698-7703.PubMedGoogle Scholar
  23. Gilbert, W., M. Marchionni & G. McKnight, 1986. On the antiquity of introns. Cell 46: 1377-1382.Google Scholar
  24. Go, M., 1981. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature 291: 90-93.Google Scholar
  25. Guerrier-Takada, C. et al., 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35: 849-857.CrossRefPubMedGoogle Scholar
  26. Jensen, E.O. et al., 1981. The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291: 677-679.Google Scholar
  27. Kersanach, R. et al., 1994. Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367: 387-389.PubMedGoogle Scholar
  28. Kruger, K., P.J. Grabovski, A.J. Zang, J. Sands, D.E. Gottschling & T.R. Cech, 1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31: 147-157.CrossRefPubMedGoogle Scholar
  29. Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11: 673-680.PubMedGoogle Scholar
  30. Long, M. & C. Rosemberg, 2000. Testing the 'proto-splice sites' model of intron origin: evidence from analysis of intron phase correlation. Mol. Biol. Evol. 17: 1789-1796.PubMedGoogle Scholar
  31. Long, M., S.J. De Souza & W. Gilbert, 1995a. Evolution of the intron-exon structure of eukaryotic genes. Curr. Opin. Genet. Dev. 5: 774-778.PubMedGoogle Scholar
  32. Long, M., C. Rosemberg & W. Gilbert, 1995b. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499.PubMedGoogle Scholar
  33. Long et al., 1998. Relationship between 'proto-splice sites' and intron phases: evidence from dicodon analysis. Proc. Natl. Acad. Sci. USA 95: 219-223.PubMedGoogle Scholar
  34. Marchionni, M. & W. Gilbert, 1986. The triose phosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 46: 133-141.CrossRefPubMedGoogle Scholar
  35. Ohno, S., 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin.Google Scholar
  36. Palmer, J.D. & J.M. Logsdon, 1991. The recent origin of introns. Curr. Opin. Genet. Dev. 1: 470-477.Google Scholar
  37. Rossman, M.G. & A. Liljas, 1974. Recognition of structural domains in globular proteins. J. Mol. Biol. 85: 177-181.PubMedGoogle Scholar
  38. Roy, S., M. Nosaka, S.J. De Souza & W. Gilbert, 1999. Centripetal modules and ancient introns. Gene 238: 85-91.PubMedGoogle Scholar
  39. Shiba, K., 1995. Dissection of an enzyme into two fragments at intron-exon boundaries, pp. 11-21 in Tracing Biological Evolution in Protein and Gene Structures, edited by M. Go & P. Schimmel. Elsevier Science, Amsterdam.Google Scholar
  40. Stoltzfus, A., D.F. Spencer, M. Zuker, J.M. Logsdon Jr. & W.F. Doolittle, 1994. Testing the Exon Theory of Genes: the evidence from protein structure. Science 265: 202-207.Google Scholar
  41. Stoltzfus, A., J.M. Logsdon Jr., J.D. Palmer & W.F. Doolittle, 1997. Intron sliding and the diversity of intron positions. Proc. Natl. Acad. Sci. USA 94: 10739-10744.PubMedGoogle Scholar
  42. Strauss, D. & W. Gilbert, 1985. Genetic engineering in the precambrian: structure of the chicken triose phosphate isomerase gene. Mol. Cell. Biol. 5: 3497-3506.PubMedGoogle Scholar
  43. Tittiger, C., S. Whyard & V.K. Walker, 1993. A novel intron site in the triose phosphate isomerase gene from the mosquito Culex tarsalis. Nature 361: 470-472.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sandro J. de Souza
    • 1
  1. 1.Ludwig Institute for Cancer Research, Sao Paulo BranchSao PauloBrazil

Personalised recommendations