Advertisement

Designs, Codes and Cryptography

, Volume 29, Issue 1–3, pp 51–70 | Cite as

A New Class of Designs Which Protect against Quantum Jumps

  • Thomas Beth
  • Christopher Charnes
  • Markus Grassl
  • Gernot Alber
  • Aldo Delgado
  • Michael Mussinger
Article

Abstract

We present the theory and construction of a new class of designs, which we call SEEDs (spontaneous emission error designs), arising in the study of decay processes of certain quantum systems used in the newly emerging field of quantum computing. We show that there is a simple and surprising connection between subspaces of the system Hilbert space, stable against these quantum jumps and the incidence matrices of SEEDs.

quantum error correction resolvable designs partial designs large sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alber, T. Beth, C. Charnes, A. Delgado, M. Grassl and M. Mussinger, Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes, Physical Review Letters, Vol. 86, No. 19 (2001) pp. 4402–4405.Google Scholar
  2. 2.
    A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H. Weinfurter, Elementary gates for quantum computation, Physical Review A, Vol. 52, No. 5 (1995) pp. 3457–3467.Google Scholar
  3. 3.
    T. Beth, A class of designs protecting against quantum jumps. In (A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Tha, eds.), Finite Geometries, Oberwolfach: Mathematisches Forschungsinstitut, Report No. 52/2001, p. 4Google Scholar
  4. 4.
    T. Beth and M. Grassl, The quantum Hamming and hexacodes, Fortschritte der Physik, Vol. 46, No. 4–5 (1998) pp. 459–491.Google Scholar
  5. 5.
    T. Beth, D. Jungnickel and H. Lenz, Design Theory, Encyclopaedia of Mathematics, 2nd ed., Cambridge University Press, Cambridge (1999).Google Scholar
  6. 6.
    W. Bosma, J. J. Cannon and C. Playoust, The Magma algebra system I: the user language, Journal of Symbolic Computation, Vol. 24, No. 3–4 (1997) pp. 235–266.Google Scholar
  7. 7.
    A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Physical Review Letters, Vol. 78, No. 3 (1997a) pp. 405–408.Google Scholar
  8. 8.
    A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), In Proceedings ISIT 97 (1997b) p. 292.Google Scholar
  9. 9.
    A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, Vol. 44, No. 4 (1998) pp. 1369–1387.Google Scholar
  10. 10.
    A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Physical Review A, Vol. 54, No. 2 (1996) pp. 1098–1105.Google Scholar
  11. 11.
    L. G. Chouinard II, Partitions of the 4–subset of a 13–set into disjoint projective planes, Discrete Mathematics, Vol. 45 (1983) pp. 297–300.Google Scholar
  12. 12.
    J. I. Cirac and P. Zoller, Quantum computation with cold trapped ions, Physical Review Letters, Vol. 74, No. 20 (1995) pp. 4091–4094.Google Scholar
  13. 13.
    C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press (1996).Google Scholar
  14. 14.
    D. G. Cory, A. F. Fahmy and T. F. Havel, Ensemble quantum computing by nuclear resonance spectroscopy, Technical Report TR-10–96, B. C. M. P., Harvard Medical Medical School, Boston (1996).Google Scholar
  15. 15.
    P. M. A. Dirac, The Principles of Quantum Mechanics, 4th ed., Clarendon Press, Oxford (1958).Google Scholar
  16. 16.
    A. Ekert and C. Macchiavello, Quantum error correction for communication, Physical ReviewLetters,Vol. 77, No. 12 (1996) pp. 2585–2588.Google Scholar
  17. 17.
    J. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of formally self-dual codes, In: Proceedings of the 36th Allerton Conference on Communication, Control and Computing (1998) pp. 566–575.Google Scholar
  18. 18.
    N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science, Vol. 275, No. 5298 (1997) pp. 350–356.Google Scholar
  19. 19.
    D. Gottesman, A class of quantum error-correcting codes saturating the quantum hamming bound, Physical Review A, Vol. 54, No. 3 (1996) pp. 1862–1868.Google Scholar
  20. 20.
    M. Grassl and T. Beth, A note on non-additive quantum codes, Technical Report quant-ph/9703016, Los Alamos National Laboratory (1997).Google Scholar
  21. 21.
    M. Grassl, T. Beth and T. Pellizzari, Codes for the quantum erasure channel, Physical Review A, Vol. 56, No. 1 (1997) pp. 33–38.Google Scholar
  22. 22.
    M. Harada and P. R. J. Őstergård, Classification of extremal formally self-dual even codes of length 22, to appear in Graphs and Combinatorics (2002).Google Scholar
  23. 23.
    G. T. Kennedy and V. Pless, On designs and formally self-dual codes, Designs, Codes and Cryptography, (1994) pp. 43–55.Google Scholar
  24. 24.
    A. Klappenecker and M. Rötteler, Beyond stabilizer codes I: nice error bases, IEEE Transactions on Information Theory, LANL preprint quant-ph/0010082, Vol. 48, No. 8 (2002) pp. 2392–2395.Google Scholar
  25. 25.
    E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Physical Review A, Vol. 55, No. 2 (1997) pp. 900–911.Google Scholar
  26. 26.
    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).Google Scholar
  27. 27.
    T. Pellizzari, T. Beth, M. Grassl and J. Müller-Quade, Stabilization of quantum states in quantum optical systems, Physical Review A, Vol. 54, No. 4 (1996) pp. 2698–2702.Google Scholar
  28. 28.
    T. Pellizzari, S. A. Gardiner, J. I. Cirac and P. Zoller, Decoherence, continuous observation, and quantum computing: a cavity QED model, Physical Review Letters, Vol. 75, No. 21 (1995) pp. 3788–3791.Google Scholar
  29. 29.
    E. M. Rains and N. J. A. Sloane, Self-dual codes. In (V. P. Pless and W. C. Huffman eds.), Handbook of Coding Theory, North-Holland (1998).Google Scholar
  30. 30.
    P. W. Shor, Algorithms for quantum computation: discrete logarithm and factoring. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press (1994) pp. 124–134.Google Scholar
  31. 31.
    P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Physical Review A, Vol. 52, No. 4 (1995) pp. R2493–R2496.Google Scholar
  32. 32.
    J. Simonis, The [18, 9, 6] code is unique, Discrete Mathematics, Vol. 106/107 (1992) pp. 439–448.Google Scholar
  33. 33.
    A. Steane, Multiple particle interference and quantum error correction, Proceedings of the Royal Society London Series A, Vol. 452 (1996a) pp. 2551–2577.Google Scholar
  34. 34.
    A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters, Vol. 77, No. 5 (1996b) pp. 793–797.Google Scholar
  35. 35.
    W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature, Vol. 299, No. 5886 (1982) pp. 802–803.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Thomas Beth
    • 1
  • Christopher Charnes
    • 1
    • 2
  • Markus Grassl
    • 1
  • Gernot Alber
    • 3
  • Aldo Delgado
    • 3
  • Michael Mussinger
    • 3
  1. 1.Institut für Algorithmen und Kognitive SystemeUniversität KarlsruheKarlsruheGermany
  2. 2.Germany and Department of Computer Science & Software EngineeringUniversity of MelbourneParkvilleAustralia
  3. 3.Abteilung für QuantenphysikUniversität UlmUlmGermany

Personalised recommendations