, Volume 118, Issue 2–3, pp 123–131 | Cite as

Introns in Gene Evolution



Introns are integral elements of eukaryotic genomes that perform various important functions and actively participate in gene evolution. We review six distinct roles of spliceosomal introns: (1) sources of non-coding RNA; (2) carriers of transcription regulatory elements; (3) actors in alternative and trans-splicing; (4) enhancers of meiotic crossing over within coding sequences; (5) substrates for exon shuffling; and (6) signals for mRNA export from the nucleus and nonsense-mediated decay. We consider transposable capacities of introns and the current state of the long-lasting debate on the ‘early-or-late’ origin of introns. Cumulative data on known types of contemporary exon shuffling and the estimation of the size of the underlying exon universe are also discussed. We argue that the processes central to introns-early (exon shuffling) and introns-late (intron insertion) theories are entirely compatible. Each has provided insight: the latter through elucidating the transposon capabilities of introns, and the former through understanding the importance of introns in genomic recombination leading to gene rearrangements and evolution.

evolution exons genes genome introns splicing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akamatsu, W. & H. Okano, 2001. No to Hattatsu. Brain Dev. 33: 114-120.Google Scholar
  2. Akopian, A.N., K. Okuse, V. Souslova, S. England, N. Ogata & J.N. Wood, 1999. Trans-splicing of a voltage-gated sodium channel is regulated by nerve growth factor. FEBS Lett. 445: 177-182.PubMedGoogle Scholar
  3. Aoki, Y., Z. Huang, S.S. Thomas, P.G. Bhide, I. Huang, M.A. Moskowitz & S.A. Reeves, 2000. Increased susceptibility to ishemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J. 14: 1965-1973.PubMedGoogle Scholar
  4. Belford, M. & P.S. Perlman, 1995. Mechanisms of intron mobility. J. Biol. Chem. 270: 30237-30240.PubMedGoogle Scholar
  5. Berget, S.M., C. Moore & P.A. Sharp, 1977. Spliced segments at the 5′terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 74: 3171-3175.PubMedGoogle Scholar
  6. Black, D.L., 2000. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103: 367-370.PubMedGoogle Scholar
  7. Blake, C.C.F., 1978. Do genes-in-pieces imply proteins-in-pieces? Nature 273: 267.Google Scholar
  8. Bonen, L. & J. Vogel, 2001. The ins and outs of group II introns. Trends Genet. 17: 322-331.PubMedGoogle Scholar
  9. Brooks, A.R., B.P. Nagy, S. Taylor, W.S. Simonet, J.M. Taylor & B. Levy-Wilson, 1994. Sequences containing the second-intron enhancer are essential for transcription of the human apolipoprotein B gene in the livers of transgenic mice. Mol. Cell. Biol. 14: 2243-2256.PubMedGoogle Scholar
  10. Carvalho, A.B. & A.G. Clark, 1999. Intron size and natural selection. Nature 401: 344.PubMedGoogle Scholar
  11. Caudevilla, C., C. Codony, D. Serra, G. Plasencia, R. Roman, A. Graessmann, G. Asins, M. Bach-Elias & F.G. Hegardt, 2001, Localization of an exonic splicing enhancer responsible for mammalian natural trans-splicing. Nucl. Acids Res. 29: 3108-3115.PubMedGoogle Scholar
  12. Cavaille, J., K. Buiting, M. Kiefmann, M. Lalande, C.I. Brannan, B. Horsthemke, J.-P. Bachellerie, J. Brosius & A. Huttenhofer, 2000. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl. Acad. Sci. USA 97: 14311-14316.PubMedGoogle Scholar
  13. Cavalier-Smith, T., 1985. Selfish DNA and the origin of introns. Nature 315: 283-284.PubMedGoogle Scholar
  14. Cavalier-Smith, T., 1991. Intron phylogeny: a new hypothesis. Trend. Genet. 7: 145-148.Google Scholar
  15. Chow, L.T., R.E. Gelinas, J.R. Broker & R.J. Roberts, 1977. An amazing sequence arrangement at the 5′ends of adenovirus 2 messenger RNA. Cell 12: 1-8.PubMedGoogle Scholar
  16. Comeron, J.M. & M. Kreitman, 2000. The correlation between intron length and recombination in Drosophila: dynamic equilibrium between mutational and selective forces. Genetics 156: 1175-1190.PubMedGoogle Scholar
  17. Crick, F., 1979. Split genes and RNA splicing. Science 204: 264-271.PubMedGoogle Scholar
  18. Croft, L., S. Schandroff, F. Clark, K. Burrage, P. Arctander & J.S. Mattick, 2000. ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat. Genet. 24: 340-341.PubMedGoogle Scholar
  19. Darnel, J.E., 1978. Implications of RNA. RNA splicing in evolution of eukaryotic cells. Science 202: 1257-1260.PubMedGoogle Scholar
  20. Domon, C. & A. Steinmetz, 1994. Exon shuffling in anther-specific genes from sunflower. Mol. Gen. Genet. 244: 312-317.PubMedGoogle Scholar
  21. Doolittle, W.F., 1978. Genes in pieces: were they ever together? Nature 272: 581-582.Google Scholar
  22. Doolittle, W.F., 1999. Lateral genomics. Trends Cell Biol. 9: M5-M8.Google Scholar
  23. Dorit, R.L., L. Schoengach & W. Gilbert, 1990. How big is the universe of exons? Science 250: 1377-1382.PubMedGoogle Scholar
  24. Dorn, R., G. Reuter & A. Loewendorf, 2001. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl. Acad. Sci. USA 98: 9724-9729.PubMedGoogle Scholar
  25. Douglas, S., S. Zauner, M. Fraunholz, M. Beaton, S. Penny, L.T. Deng, X. Wu, M. Reith, T. Cavalier-Smith & U.G. Maier, 2001. The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091-1096.PubMedGoogle Scholar
  26. Eddy, S.R., 1999. Noncoding RNA genes. Curr. Opin. Genet. Dev. 9: 695-699.PubMedGoogle Scholar
  27. Evans, D. & T. Blumenthal, 2000. Trans splicing of polycistronic Caenorhabditis elegans pre-mRNAs: analysis of the SL2 RNA. Mol. Cell. Biol. 20: 6659-6667.PubMedGoogle Scholar
  28. Fast, N.M., A.J. Roger, C.A. Richardson & W.F. Doolittle, 1998. U2 and U6 snRNA genes in the microsporidian Nosema locustae: evidence for a functional spliceosome. Nucl. Acids Res. 26: 3202-3207.PubMedGoogle Scholar
  29. Fast, N.M. & W.F. Doolittle, 1999. Trichomonas vaginalis possesses a gene encoding the essential spliceosomal component, PRP8.Google Scholar
  30. Fedorov, A., G. Suboch, M. Bujakov & L. Fedorova, 1992. Analysis of nonuniformity in intron phase distribution. Nucl. Acids Res. 20: 2553-2557.PubMedGoogle Scholar
  31. Fedorov, A., V. Starshenko, L. Fedorova, V. Filatov & E. Grigor'ev, 1998. Influence of exon duplication and shuffling on intron phase distribution. J. Mol. Evol. 46: 263-271.PubMedGoogle Scholar
  32. Ferguson, K.C. & J.H. Rothman, 1999. Alterations in the conserved SL1 trans-spliced leader of Caenorhabditis elegans demonstrate flexibility in length and sequence requirements in vivo. Mol. Cell. Biol. 19: 1892-1900.PubMedGoogle Scholar
  33. Filipowicz, W., 2000. Imprinted expression of small nucleolar RNAs in brain: time for RNomics. Proc. Natl. Acad. Sci. USA 97: 14035-14037.PubMedGoogle Scholar
  34. Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.Google Scholar
  35. Gilbert, W., 1987. The exon theory of genes. Cold Spring Harbor Symp. Quant. Biol. 52: 901-905.PubMedGoogle Scholar
  36. Giroux, M.J., M. Clancy, J. Baier, L. Ingham, D. McCarty & C. Hannah, 1994. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl. Acad. Sci. USA 91: 12150-12154.PubMedGoogle Scholar
  37. Hartman, H. & A. Fedorov, 2002. The origin of the eukaryotic cell-a genomic investigation. Proc. Natl. Acad. Sci. USA, 99: 1420-1425.PubMedGoogle Scholar
  38. Hogenesch, J.B., K.A. Ching, S. Batalov, A.I. Su, J.R. Walker, Y.S.A. Zhou, Kay, P.G. Schultz & M.P. Cooke, 2001. A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell 106: 413-415.PubMedGoogle Scholar
  39. Howell, M. & C.S. Hill, 1997. Xsmad2 directly activates the activininducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16: 7411-7421.PubMedGoogle Scholar
  40. Hural, J.A.,M. Kwan, G. Henkel, M.B. Hock & M.A. Brown, 2000. An intron transcriptional enhancer element regulates IL-4 gene locus accessibility in mast cells. J. Immunol. 165: 3239-3249.PubMedGoogle Scholar
  41. Jeffreys, A.J. & R.A. Flavell, 1977. The rabbit beta-globin gene contains a large insert in the coding sequence. Cell 12: 1097-1108.PubMedGoogle Scholar
  42. Katinka, M.D., S. Duprat, E. Cornillot, G. Metenier, F. Thomarat, G. Prensier, V. Barbe, E. Peyretaillade, P. Brottier, P. Wincker, F. Delbac, H. El Alaoui, P. Peyret, W. Saurin, M. Gouy, J. Weissenbach & C.P. Vivares, 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450-453.PubMedGoogle Scholar
  43. Kawasaki, T., S. Okumura, N. Kishimoto, H. Shimada & H. Ichikawa, 1999. RNA maturation of the rice SPK gene may involve trans-splicing. Plant J. 18: 625-632.PubMedGoogle Scholar
  44. Krause, M. & D. Hirsh, 1987. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49: 753-761.PubMedGoogle Scholar
  45. Lambowitz, A.M. & M. Belford, 1993. Introns as mobile genetic elements. Annu. Rev. Biochem. 62: 587-622. 131PubMedGoogle Scholar
  46. Liu, J. & E.S. Maxwell, 1990. Mouse U14 snRNA is encoded in an intron of the mouse cognate hsc70 heat shock gene. Nucl. Acids Res. 18, 6565-6571.PubMedGoogle Scholar
  47. Logsdon, J.M., M.G. Tyshenko, C. Dixon, J.D. Jafari, V.K. Walker & J.D. Palmer, 1995. Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the intronslate theory. Proc. Natl. Acad. Sci. USA 92: 8507-8511.PubMedGoogle Scholar
  48. Logsdon, J.M., 1998. The recent origin of spliceosomal introns revised. Curr. Opin. Genet. Dev. 8: 637-648.PubMedGoogle Scholar
  49. Logsdon, J.M., A. Stoltzfus & W.F. Doolittle, 1998. Molecular evolution: recent cases of spliceosomal intron gain? Curr. Biol. 8: R560-R563.PubMedGoogle Scholar
  50. Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91-95.PubMedGoogle Scholar
  51. Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron-exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499.PubMedGoogle Scholar
  52. Long, M., W. Wang & J. Zhang, 1999. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei in Drosophila. Gene 238: 135-141.PubMedGoogle Scholar
  53. Long, M. & C. Rosenberg, 2000. Testing the 'proto-splice sites' model of intron origin: evidence from analysis of intron phase correlations. Mol. Biol. Evol. 17: 1789-1796.PubMedGoogle Scholar
  54. Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11: 673-680.PubMedGoogle Scholar
  55. Lopez, A.J., 1998. Alternative splicing of pre-mRNA: development consequences and mechanisms of regulation. Annu. Rev. Genet. 32: 279-305.PubMedGoogle Scholar
  56. Lothian, C. & U. Lendahl, 1997. An evolutionary conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells. Eur. J. Neurosci. 9: 452-462.PubMedGoogle Scholar
  57. Lou, H., R.F. Gagel & S.M. Berget, 1996. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10: 208-219.PubMedGoogle Scholar
  58. Maniatis, T. & R. Reed, 2002. An extensive network of coupling among gene expression machines. Nature 416: 499-506.PubMedGoogle Scholar
  59. Martinez-Abarca, F. & N. Toro, 2000. Group II introns in the bacterial world. Mol. Microbiol. 38: 917-926.PubMedGoogle Scholar
  60. Maxwell, E.S. & M.J. Fournier, 1995. The small nucleolar RNAs. Ann. Rev. Biochem. 35: 897-934.Google Scholar
  61. Missler, M. & T.C. Sudhof, 1998. Neuroxins: three genes and 1001 products. Trends Genet. 14: 20-26.PubMedGoogle Scholar
  62. Mitchell, J.R. & K. Collins, 2000. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell 6: 361-371.PubMedGoogle Scholar
  63. Muscarella, D.E. & V.M. Vogt, 1989. A mobile group I intron in the nuclear rDNA of Physarum polycephalum. Cell 56: 443-454.CrossRefPubMedGoogle Scholar
  64. Nikoh, N. & T. Fukatsu, 2001. Evolutionary dynamics of multiple group I introns in nuclear ribosomal RNA genes of endoparasitic fungi of the genus Cordyceps. Mol. Biol. Evol. 81: 1631-1642.Google Scholar
  65. Nilsen, T.W., 2001. Evolutionary origin of SL-addition transsplicing: still an enigma. Trends Genet. 17: 678-680.PubMedGoogle Scholar
  66. Nixon, J.E.J., A. Wang, H.G. Morrison, A.G. McArthur, M.L. Sogin, B.J. Loftus & J. Samuelson, 2002. A Spliceosomal intron in Giardia lamblia. Proc. Natl. Acad. Sci. USA 99: 3701-3705.PubMedGoogle Scholar
  67. Nurminsky, D.I., M.V. Nurminskaya, D. DeAguiar & D.L. Hartl, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572-575.PubMedGoogle Scholar
  68. Oshima, R.G., L. Abrams & D. Kulesh, 1990. Activation of an intron enhancer within the keratin 18 gene by expression of cfos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev. 4: 835-848.PubMedGoogle Scholar
  69. Palmer, J.D. & J.M. Logsdon, 1991. The recent origin of introns. Curr. Opin. Genet. Dev. 1: 470-477.PubMedGoogle Scholar
  70. Pan, Q. & R.U. Simpson, 1999. C-myc intron element-binding proteins are required for 1,25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4. J. Biol. Chem. 274: 8437-8444.PubMedGoogle Scholar
  71. Pankov, R., A. Umezawa, R. Maki, C.J. Der, C.A. Hauser & R.G. Oshima, 1994. Oncogene activation of human keratin 18 transcription via the Ras signal transduction pathway. Proc. Natl. Acad. Sci. USA 91: 873-877.PubMedGoogle Scholar
  72. Patthy, L., 1999. Genome evolution and the evolution of exonshuffling-a review. Gene 238: 103-114.PubMedGoogle Scholar
  73. Peculis, B.A., 2000. RNA-binding proteins: if it looks like a sn(o)RNA. Curr. Biol. 10: R916-R918.PubMedGoogle Scholar
  74. Peng,Y., A. Genin, N.B. Spinner, R.H. Diamond & R. Taub, 1998. The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization and identification of an intron enhancer. J. Biol. Chem. 273: 17286-17295.PubMedGoogle Scholar
  75. Pogacic, V., F. Dragon & W. Filipowicz, 2000. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20: 9028-9040.PubMedGoogle Scholar
  76. Reed, R. & K. Magni, 2001. A new view of mRNA export: separating the wheat from the chaff. Nat. Cell Biol. 3: E201-E204.PubMedGoogle Scholar
  77. Rhodes, K. & R.G. Oshima, 1998. A regulatory element of the human keratin 18 gene with AP-1-dependent promoter activity. J. Biol. Chem. 273: 26534-26542.PubMedGoogle Scholar
  78. Roger, A.J. & W.F. Doolittle, 1993. Why introns-in-pieces? Nature 364: 289-290.PubMedGoogle Scholar
  79. Saxonov, S. & W. Gilbert, 2003. The universe of exons revisited. Genetica 118: 267-278.PubMedGoogle Scholar
  80. Schmucker, D., J. Clemens, J. Shu, C. Worby, J. Xiao, M. Muda, J. Dixon & L. Zipursky, 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101: 671-684.PubMedGoogle Scholar
  81. Sharp, P.A., 1985. On the origin of RNA splicing and introns. Cell 42: 397-400.CrossRefPubMedGoogle Scholar
  82. Silvak, L.E., G. Pont-Kingdon, K. Le, G. Mayr, K.F. Tai, B.T. Stevens & W.L. Carroll, 1999. A novel intron element operates posttranscriptionally to regulate human N-myc expression. Mol. Cell. Biol. 19: 155-163.PubMedGoogle Scholar
  83. Simard, M.J. & B. Chabot, 2000. Control of hnRNP A1 alternative splicing: an intron element represses use of the common 3′ splice site. Mol. Cell. Biol. 20: 7353-7362.PubMedGoogle Scholar
  84. Takahara, T., S.I. Kanazu, S. Yanagisawa & H. Akanuma, 2000. Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J. Biol. Chem. 275: 38067-38072.PubMedGoogle Scholar
  85. Weinsein, L.B. & J.A. Steitz, 1999. Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11: 378-384.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Vision Research Laboratories, New England Medical CenterTufts University School of MedicineBostonUSA
  2. 2.Department of Molecular and Cellular BiologyHarvard UniversityCambridgeUSA

Personalised recommendations