Advertisement

Journal of Neurocytology

, Volume 31, Issue 3–5, pp 337–346 | Cite as

Cortical area and species differences in dendritic spine morphology

  • Ruth Benavides-Piccione
  • Inmaculada Ballesteros-Yáñez
  • Javier DeFelipe
  • Rafael Yuste
Article

Abstract

Dendritic spines receive most excitatory inputs in the neocortex and are morphologically very diverse. Recent evidence has demonstrated linear relationships between the size and length of dendritic spines and important features of its synaptic junction and time constants for calcium compartmentalisation. Therefore, the morphologies of dendritic spines can be directly interpreted functionally. We sought to explore whether there were potential differences in spine morphologies between areas and species that could reflect potential functional differences. For this purpose, we reconstructed and measured thousands of dendritic spines from basal dendrites of layer III pyramidal neurons from mouse temporal and occipital cortex and from human temporal cortex. We find systematic differences in spine densities, spine head size and spine neck length among areas and species. Human spines are systematically larger and longer and exist at higher densities than those in mouse cortex. Also, mouse temporal spines are larger than mouse occipital spines. We do not encounter any correlations between the size of the spine head and its neck length. Our data suggests that the average synaptic input is modulated according to cortical area and differs among species. We discuss the implications of these findings for common algorithms of cortical processing.

Keywords

Cortical Area Dendritic Spine Excitatory Input Cortical Processing Neck Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonhoeffer, T. &; Yuste, R. (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35, 1019–1027.PubMedGoogle Scholar
  2. Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Research 9, 268–287.PubMedGoogle Scholar
  3. Denk, W., Delaney, K. R., Gelperin, A., Kleinfeld, D., Strowbridge, B. W., Tank, D. W. &; Yuste, R. (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. Journal of Neuroscience Methods 54, 151–162.PubMedGoogle Scholar
  4. Dierssen, M., Benavides-Piccione, R., MartÍnez-CuÉ, C., Estivill, X., FlÓrez, J., Elston, G. &; deFelipe, J. (2003) Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of down syndrome: Effects of enrichment. Cerebral Cortex. submittedGoogle Scholar
  5. Douglas, R. J., Martin, K. A. C. &; Whittteridge, D. (1989) Acanonical microcircuit for neocortex. Neural Computation 1, 480–488.Google Scholar
  6. Elston, G. N., Pow, D. V. &; Calford, M. B. (1997) Neuronal composition and morphology in layer IV of two vibrissal barrel subfields of rat cortex. Cerebral Cortex 7, 422–431.PubMedGoogle Scholar
  7. Elston, G. N., Benavides-Piccione, R., &; deFelipe, J. (2001) The pyramidal cell in cognition: A comparative study in human and monkey. Journal of Neuroscience 21, RC163.Google Scholar
  8. Elston, G. N. &; deFelipe, J. (2002) Spine distribution in cortical pyramidal cells:Acommon organizational principle across species. Progress in Brain Research 136, 109–133.PubMedGoogle Scholar
  9. Elston, G. N. (2002) Cortical heterogeneity: Implications for visual processing and polysensory integration. Journal of Neurocytology 31, 317–335.PubMedGoogle Scholar
  10. Feldman, M. L. (1984) Morphology of the neocortical pyramidal neuron. In Cerebral Cortex, Vol. 1, Cellular Components of the Cerebral Cortex (edited by Peters, A. &; Jones, E. G.) pp. 123–200. New York: Plenum Press.Google Scholar
  11. Fischer, M., Kaech, S., Knutti, D. &; Matus, A. (1998) Rapid actin-based plasticity in dendritic spine. Neuron 20, 847–854.PubMedGoogle Scholar
  12. Franklin, K. B. J. &; Paxinos, G. (1997) Themouse brain in stereotaxic coordinates. San Diego: Academic Press.Google Scholar
  13. Gray, E. G. (1959a) Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study. Journal of Anatomy 83, 420–433.Google Scholar
  14. Gray, E. G. (1959b) Electron microscopy of synaptic contacts on dendritic spines of the cerebral cortex. Nature 183, 1592–1594.PubMedGoogle Scholar
  15. Harris, K. M. &; Stevens, J. K. (1989) Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics. Journal Neuroscience 9, 2982–2997.Google Scholar
  16. Jones, E. G. &; Powell, T. P. S. (1969) Morphological variation in the dendritic spines of the neocortex. Journal of Cell Science 5, 509–529.PubMedGoogle Scholar
  17. Lorente de NÓ, R. (1922) La corteza cerebral del ratón. Trabajos Laboratorio Investigaciones Biológicas 20, 41–78.Google Scholar
  18. Lorente de NÓ, R. (1933) Studies on the structure of the cerebral cortex. Journal of Psychology und Neurology 45, 381–438.Google Scholar
  19. Majewska, A., Brown, E., Ross, J. &; Yuste, R. (2000a) Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. Journal of Neuroscience 20, 1722–1734.PubMedGoogle Scholar
  20. Majewska, A., Tashiro, A. &; Yuste, R. (2000b) Regulation of spine calcium compartmentalization by rapid spine motility. Journal of Neuroscience 20, 8262–8268.PubMedGoogle Scholar
  21. MarÍn-Padilla, M. (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations. Brain Research 44, 625–29.PubMedGoogle Scholar
  22. Matus, A., Ackerman, N M., Pehling, G., Byers H. R. &; Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proceedings of the National Academy of Sciences USA 79, 7590–7594.Google Scholar
  23. Nusser, Z., Lujan, R., Laube, G., Roberts, J. D., Molnar, E. &; Somogyi, P. (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559.PubMedGoogle Scholar
  24. Purpura, D. (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186, 1126–1128.PubMedGoogle Scholar
  25. RamÓn Y Cajal, S. (1888) Estructura de los centros nerviosos de las aves. Revista Trimestral de Histología Normal y Patológica 1, 1–10.Google Scholar
  26. RamÓn Y Cajal, S. (1899) La Textura del Sistema Nerviosa del Hombre y los Vertebrados. (Primera Edicion). Madrid: Moya.Google Scholar
  27. Ruiz-Marcos, A. &; Valverde, F. (1969) The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark raised mice. Experimental Brain Research 8, 284–294.Google Scholar
  28. Sabatini, B. L., Oertner, T. G. &; Svoboda, K. (2002) The life cycle of Ca(2+) ions in dendritic spines. Neuron 33, 439–452.PubMedGoogle Scholar
  29. Schikorski, T. &; Stevens, C. (1999) Quantitative finestructural analysis of olfactory cortical synapses. Proceedings of the National Academy of Sciences USA 96, 4107–4112.Google Scholar
  30. Schikorski, T. &; Stevens, C. F. (2001) Morphological correlates of functionally defined synaptic vesicle populations. Nature Neuroscience 4, 391–395.PubMedGoogle Scholar
  31. Shepherd, G. (1996) The dendritic spine: A multifunctional integrative unit. Journal of Neurophysiology 75, 2197–210.PubMedGoogle Scholar
  32. Svoboda, K., Tank, D. W., &; Denk, W. (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719.PubMedGoogle Scholar
  33. Swindale, N. V. (1981) Dendritic spines only connect. Trends in Neurosciences 4, 240–241.Google Scholar
  34. Yuste, R. &; Denk, W. (1995) Dendritic spines as basic units of synaptic integration. Nature 375, 682–684.PubMedGoogle Scholar
  35. Yuste, R. &; Bonhoeffer, T. (2001) Morphological changes in dendritic spines associated with longterm synaptic plasticity. Annual Review of Neuroscience 24, 1071–1089.PubMedGoogle Scholar
  36. Yuste, R. &; Majewska, A. (2001) On the function of dendritic spines. The Neuroscientist 7, 387–395.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ruth Benavides-Piccione
    • 1
  • Inmaculada Ballesteros-Yáñez
    • 1
  • Javier DeFelipe
    • 1
  • Rafael Yuste
    • 1
    • 2
  1. 1.Instituto Cajal, MadridSpain
  2. 2.Department of Biological SciencesColumbia UniversityNew YorkUSA

Personalised recommendations