Advertisement

Biodiversity & Conservation

, Volume 12, Issue 10, pp 2077–2089 | Cite as

110000 years of Quaternary beetle diversity change

  • P. Ponel
  • J. Orgeas
  • M.J. Samways
  • V. Andrieu-Ponel
  • J.-L. de Beaulieu
  • M. Reille
  • P. Roche
  • T. Tatoni
Article

Abstract

Our first aim was to document the effects of palaeotemperatures and vegetation changes on beetle assemblages, and secondly to determine the extent to which surrogacy analysis at the family taxonomic level reveals patterns evident from lower taxa analysis. The sedimentary sequence sampled on the experimental site of ‘La Grande Pile’ (Vosges, France) covers the whole of the last climatic cycle. Beetle fragments were extracted from 39 coring samples and identified to the lowest possible taxonomic level. A total of 3092 beetle specimens belonging to 394 taxa were identified, more than half to species level. Carabidae, Staphylinidae and Curculionidae families together represented 40% of the overall taxa richness. Beetle taxa richness and assemblage composition varied markedly over time. Average summer temperatures clearly play a major role in diversity patterns, as temperature was positively correlated with taxon richness. Nevertheless, the warmest and the coldest periods were not the richest and the poorest, respectively, and the most humid period did not correspond to maximum beetle richness. Beetle assemblages are likely to fluctuate in response to other factors such as plant diversity and vegetation structure. Steppe-like vegetation did not reduce species richness while dense, homogenous and closed forests did. Family patterns mirrored those observed at the lower taxa level. This makes the family level a convincing alternative to lower taxonomic level analyses by representing a faithful picture of changing beetle diversity over a long period of time. Finally, evolution of beetle diversity over the Quaternary represents a convincing model for evaluating the effect of close and wide past climate changes, and for assisting in management of present-day biodiversity as part of the current anthropogenic global climate change.

Climate change Climate–beetle–vegetation relationships Coleoptera Fossil beetle diversity Quaternary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson T.C., Briffa K.R., Coope G.R., Joachim M.J. and Perry D.W. 1986. Climatic calibration of coleopteran data. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK, pp. 851–858.Google Scholar
  2. Barbault R. 1995. Écologie générale, Structure et fonctionnement de la biosphere. Masson, Paris.Google Scholar
  3. de Beaulieu J.L. and Reille M. 1992. The last climatic cycle at La Grande Pile (Vosges, France): a new pollen profile. Quaternary Science Review 11: 431–438.Google Scholar
  4. Bell M.A. 2000. Bridging the gap between population biology and paleobiology. Evolution 54: 1457–1461.Google Scholar
  5. Bell M. and Walker M.J.C. 1992. Late Quaternary Environmental Change: Physical and Human Perspectives. Longman, London.Google Scholar
  6. Bennett K.D. 1990. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16: 11–21.Google Scholar
  7. Birks H.J.B. and Birks H.H. 1980. Quaternary Palaeoecology. Edward Arnold, London.Google Scholar
  8. Buckland P.C. and Coope G.R. 1991. A Bibliography and Literature Review of Quaternary Entomology. JR Collis Publications, University of Sheffield, Sheffield, UK.Google Scholar
  9. Cheddadi R., Mamakova K., Guiot J., de Beaulieu J.L., Reille M., Andrieu V. et al. 1998. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143: 73–85.Google Scholar
  10. Chessel D. 1995. ADE-4, Ordination sous contrainte. Institut d'analyse des Systèmes Biologiques et Socio-économiques, Université de Lyon 1, Lyon, France.Google Scholar
  11. Cong S. and Ashworth A.C. 1997. The use of correspondence analysis in the analysis of fossil beetle assemblages. In: Ashworth A.C., Buckland P.C. and Sadler J.P. (eds), Studies in Quaternary Entomology ¶ An Inordinate Fondness for Insects. Quaternary Proceedings No. 5. Wiley, Chichester, UK, pp. 79–82.Google Scholar
  12. Coope G.R. 1975. Climatic fluctuations in northwest Europe since the last Interglacial, indicated by fossil assemblages of Coleoptera. In: Wright A.E. and Moseley F. (eds), Ice Ages: Ancient and Modern. Seel House Press, Liverpool Geological Journal Special Issue 6, pp. 153–168.Google Scholar
  13. Coope G.R. 1978. Constancy of insect species versus inconstancy of Quaternary environments. In: Mound L.A. and Waloff N. (eds), Diversity of Insect Faunas (Symposia of the Royal Entomological Society of London 9). Blackwell, Oxford, UK, pp. 176–187.Google Scholar
  14. Coope G.R. 1986. Coleoptera analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, UK, pp. 703–713.Google Scholar
  15. Coope G.R. 1990. The invasion of Northern Europe during the Pleistocene by Mediterranean species of Coleoptera. In: di Castri F., Hansen A.J. and Debussche M. (eds), Biological Invasions in Europe and the Mediterranean Basin. Kluwer, Dordrecht, The Netherlands, pp. 203–215.Google Scholar
  16. Coope G.R. 1991. The study of the ‘nearly fossil’. Antenna 15: 158–163.Google Scholar
  17. Coope G.R. 1994. The response of insect faunas to glacial¶interglacial climatic fluctuations. Philosophical Transactions of the Royal Society of London B 344: 19–26.Google Scholar
  18. Coope G.R. and Elias S.A. 2000. The environment of Upper Palaeolithic (Magdalenian and Azilian) hunters at Hauterive-Champréveyres, Neuchâtel, Switzerland, interpreted from Coleopteran remains. Journal of Quaternary Science 15: 157–175.Google Scholar
  19. Coope G.R., Shotton F.W. and Strachan I. 1961. A Late Pleistocene fauna and flora from UptonWarren, Worcestershire. Philosophical Transactions of the Royal Society of London B 244: 379–421.Google Scholar
  20. Elias S.A. 1994. Quaternary Insects and Their Environments. Smithsonian Institution Press, Washington, DC.Google Scholar
  21. Eyre M.D., Lott D.A. and Luff M.L. 2001. The rove beetles (Coleoptera, Staphylinidae) of exposed riverine sediments in Scotland and northern England: habitat classification and conservation aspects. Journal of Insect Conservation 5: 173–186.Google Scholar
  22. Fatuyama D.J. 1987. On the role of species in anagenesis. The American Naturalist 130: 465–473.Google Scholar
  23. Kenward H. 1975. Pitfalls in the environmental interpretation of insect death assemblages. Journal of Archaeological Science 2: 85–94.Google Scholar
  24. Kenward H. 1976. Reconstructing ancient ecological conditions from insect remains: some problems and an experimental approach. Ecological Entomology 1: 7–17.Google Scholar
  25. Lowe J.J. and Walker M.J.C. 1997. Reconstructing Quaternary Environments. Longman, London.Google Scholar
  26. Magagula C.N. and Samways M.J. 2001. Maintenance of ladybeetle diversity across a heterogenous African agricultural /savanna land mosaic. Biodiversity and Conservation 10: 209–222.Google Scholar
  27. Ponel P. 1994. Les fluctuations climatiques au Pléniglaciaire würmien déduites des assemblages d'Arthropodes fossiles à La Grande Pile (Haute-Saône, France). Compte-Rendus de l'Académie des Sciences, Paris 319: 845–852.Google Scholar
  28. Ponel P. 1995a. Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeography Palaeoclimatology Palaeoecology 114: 1–41.Google Scholar
  29. Ponel P. 1995b. Aspects de la biodiversité entomologique des contreforts préalpins et des Plans de Canjuers (Var) [Coleoptera]. Faune de Provence 16: 39–50.Google Scholar
  30. Ponel P. and Richoux P. 1997. Difficultés d'interprétation des assemblages de Coléopteres fossiles quaternaires en milieu d'altitude. Geobios MS 21: 213–219.Google Scholar
  31. Pons A., Guiot J., de Beaulieu J.L. and Reille M. 1992. Recent contribution to the climatology of the last glacial¶interglacial cycle based on French pollen sequences. Quaternary Sciences Review 11: 439–448.Google Scholar
  32. Reille M. 1990. Leçons de palynologie et d'analyse pollinique. CNRS ed., Paris.Google Scholar
  33. Rioual P., Andrieu-Ponel V., Battarbee R.W., de Beaulieu J.L., Cheddadi R., Reille M. et al. 2001. High-resolution record of climate stability in France during the last Interglacial. Nature 413: 293–296.Google Scholar
  34. Rosenzweig M.L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK.Google Scholar
  35. Samways M.J., Osborn R., Hastings H. and Hattingh V. 1999. Global climatic change and accuracy of prediction of species' geographical ranges: establishment success of introduced ladybirds (Coccinellidae, Chilocorus spp.) worldwide. Journal of Biogeography 26: 795–812.Google Scholar
  36. Walkling A.P. and Coope G.R. 1996. Climatic reconstructions from the Eemian/ Early Weichselian transition in Central Europe based on the coleopteran record from Gröbern, Germany. Boreas 25: 145–159.Google Scholar
  37. Wilson M.V.H. 1988. Taphonomic processes: information loss and information gain. Geoscience Canada 15: 131–148.Google Scholar
  38. Woillard G. 1975. Recherches palynologiques sur le Pléistocène dans l'Est de la Belgique et desVosges lorraines. Travaux du Laboratoire de Palynologie et Phytosociologie, Université Catholique de Louvain.Google Scholar
  39. Woillard G. 1978. Grande Pile peat bog: a continuous pollen record for the last 140000 years. Quaternary Research 9: 1–21.Google Scholar
  40. Woillard G. and Moock W. 1982. Carbon dates at Grande Pile: correlation of land and sea chronologies. Science 215: 159–161.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • P. Ponel
  • J. Orgeas
  • M.J. Samways
  • V. Andrieu-Ponel
  • J.-L. de Beaulieu
  • M. Reille
  • P. Roche
  • T. Tatoni

There are no affiliations available

Personalised recommendations