Boundary-Layer Meteorology

, Volume 108, Issue 3, pp 343–364 | Cite as

Turbulence Statistics Measurements in a Northern Hardwood Forest

  • M. G. Villani
  • H. P. Schmid
  • H.-B. Su
  • J. L. Hutton
  • C. S. Vogel


Tower-based turbulence measurements were collected in and over a mixed hardwood forest at the University of Michigan BiologicalStation (UMBS) UMBS∼flux site in the northern summerof 2000. Velocity and temperature fluctuations were measured at five levels within the canopy (up to the canopy height, H = 21.4 m), using one- and three-dimensional sonic anemometers and fine-wire thermocouples. Six additional thermocouples were distributed over the canopy-layer depth. Three-dimensional velocities and sonic temperatures were also measured above the canopy at 1.6H and at 2.15H on the AmeriFlux tower located at the UMBS∼flux site. Vertical profiles of buoyancy flux, mean horizontal velocity, Reynolds stress, and standard deviation and skewness of velocity components were calculated. The analysis of these measurements aims at a multi-layer parameterization framework of turbulence statistics forimplementation in Lagrangian stochastic models. Turbulence profiles and power spectra above the canopy were analyzed in the context of Monin-Obukhov similarity theory (MOST) and Kolmogorov theory, as determined by stability at the top level (2.15H), to assess the extent to which surface scaling is valid as the canopy top is approached. Velocity spectra were computed to explore the potential of estimating the viscous dissipation rate, and results show that the high frequency range of the spectra above the canopy exhibits the roll-off predicted by Kolmogorov theory. Similarly, velocity standard deviations above the canopy converge to MOST predicted values toward the top level, and spectral peaks shift with stability, as expected. Within the canopy, both turbulence statistics profiles and spectral distributions follow the general known characteristics inside forests.

Broadleaf forest Canopy turbulence Forest meteorology Measurements Turbulence spectra Turbulence statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiro, B. D.: 1990a, 'Comparison of Turbulence Statistics within Three Boreal Forest Canopies', Boundary-Layer Meteorol. 51, 99-121.Google Scholar
  2. Amiro, B. D.: 1990b, 'Drag Coefficients and Turbulence Spectra within Three Boreal Forest Canopies', Boundary-Layer Meteorol. 52, 227-246.Google Scholar
  3. Baldocchi, D. and Hutchison, B. A.: 1987, 'Turbulence in an Almond Orchard: Vertical Variations in Turbulent Statistics', Boundary-Layer Meteorol. 40, 127-146.Google Scholar
  4. Baldocchi, D. D. and Meyers, T. P.: 1988, 'Turbulence Structure in a Deciduous Forest', Boundary-Layer Meteorol. 43, 345-364.Google Scholar
  5. Baldocchi, D. D., Finnigan, J. J., Wilson, K., Paw U, K. T., and Falge, E.: 2000, 'On Measuring Net Ecosystem Carbon Exchange over Tall Vegetation on Complex Terrain', Boundary-Layer Meteorol. 96, 257-291.Google Scholar
  6. Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1994, 'A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics', Boundary-Layer Meteorol. 70, 95-132.Google Scholar
  7. Campbell, G. S. and Norman, J. M.: 1998, An Introduction to Environmental Biophysics, 2nd edn., Springer-Verlag, New York, 286 pp.Google Scholar
  8. Campbell Scientific, Inc: 1998, CSAT Three Dimensional Sonic Anemometer Instruction Manual, Logan, UT, 14 pp.Google Scholar
  9. Chen, F. and Schwerdtfeger, P.: 1989, 'Flux-Gradient Relationships for Momentum and Heat over a Rough Natural Surface', Quart. J. Roy. Meteorol. Soc. 115, 335-352.Google Scholar
  10. Cleveland, W. S.: 1979, 'Robust LocallyWeighted Regression and Smoothing Scatterplots', J. Amer. Statist. Assoc. 74, 829-836.Google Scholar
  11. Finnigan, J. J.: 2000, 'Turbulence in Plant Canopies', Annu. Rev. Fluid Mech. 32, 519-571.Google Scholar
  12. Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy', Boundary-Layer Meteorol. 47, 349-377.Google Scholar
  13. Garratt, J. R.: 1978, 'Transfer Characteristics for a Heterogeneous Surface of Large Aerodynamic Roughness', Quart. J. Roy. Meteorol. Soc. 104, 491-502.Google Scholar
  14. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  15. Högström, U., Bergström, H., Smedman, A-S., Halldin, S., and Lindroth, A.: 1989, 'Turbulent Exchange above a Pine Forest, I: Fluxes and Gradients', Boundary-Layer Meteorol. 49, 197-217.Google Scholar
  16. IPCC: 2001, Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), in J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, and D. Xiaosu (eds.), Cambridge University Press, U.K., 944 pp.Google Scholar
  17. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flow: Their Structure and Measurement, Oxford University Press, New York, 289 pp.Google Scholar
  18. Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C., Pereira, M. G. P., Culf, A., and Grace, J. J.: 2000, 'Turbulence Statistics above and within Two Amazon Rain Forest Canopies', Boundary-Layer Meteorol. 94, 297-331.Google Scholar
  19. Justice, J. H.: 1981, 'The Step from One to Higher Dimensional Signal Processing-Case Histories', D. F. Findley (ed.), Applied Time Series Analysis II, Acadia Press, 798 pp.Google Scholar
  20. Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Denhartog, G., and Neumann, H. H.: 1990, 'The Influence of Atmospheric Stability on the Budgets of the Reynolds Stress and Turbulent Kinetic Energy within and above a Deciduous Forest', J. Appl. Meteorol. 29, 916-933.Google Scholar
  21. McMillen, R. T.: 1988, 'An Eddy Correlation Technique with Extended Applicability to Non-Simple Terrain', Boundary-Layer Meteorol. 43, 231-245.Google Scholar
  22. Oke, T. R.: 1987, Boundary Layer Climates, 2nd edn., Routledge, London, 435 pp.Google Scholar
  23. Pearsall, D. R.: 1995, Landscape Ecosystems of the University of Michigan Biological Station, Northern Lower Michigan: Ecosystem Diversity and Biological Diversity, Ph.D. Thesis, University of Michigan, Ann Arbor.Google Scholar
  24. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: 1997, Numerical Recipes in Fortran 77, Volume I, 2nd edn., Cambridge University Press, 933 pp.Google Scholar
  25. Rannik, Ñ., Aubinet, M., Kurbanmuradov, O., Sabelfeld, K. K., Markkanen, T., and Vesala, T.: 2000, 'Footprint Analysis for Measurements over a Heterogeneous Forest', Boundary-Layer Meteorol. 97, 137-166.Google Scholar
  26. Roth, M.: 2000, 'Review of Atmospheric Turbulence over Cities', Quart. J. Roy. Meteorol. Soc. 126, 941-990.Google Scholar
  27. Raupach, M. R., 1989: 'Applying Lagrangian Fluid-Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies', Agric. For. Meteorol. 47, 85-108.Google Scholar
  28. Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy'. Boundary-Layer Meteorol. 78, 351-382.Google Scholar
  29. Raupach, M. R., Thom, A. S., and Edwards, I.: 1980, 'AWind-Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces', Boundary-Layer Meteorol. 18, 373-397.Google Scholar
  30. Schmid, H. P.: 2002, 'Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective', Agric. For. Meteorol. 113, 159-184.Google Scholar
  31. Schmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., and Su, H.-B.: 2000, 'Measurements of CO2 and Energy Fluxes over a Mixed Hardwood Forest in the Mid-Western United States', Agric. For. Meteorol. 103, 357-374.Google Scholar
  32. Schmid, H. P., Su, H.-B., Vogel, C. S., and Curtis, P. S.: 2003, 'Ecosystem-Atmosphere Exchange of Carbon Dioxide over a Mixed Hardwood Forest in Northern Lower Michigan', J. Geophys. Res., in press.Google Scholar
  33. Shaw, R. H. and Seginer, I.: 1985, 'The Dissipation of Turbulence in Plant Canopies', in 7th Symposium on Turbulence and Diffusion, preprint volume, AMS, Boston, MA, 200-203.Google Scholar
  34. Simpson, I. J., Thurtell, G. W., Neumann, H. H, Den Hartog, G., and Edwards, G. C.: 1998, 'The Validity of the Similarity Theory in the Roughness Sublayer above the Forest', Boundary-Layer Meteorol. 87, 69-99.Google Scholar
  35. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  36. Su, H.-B., Shaw, R. H., Paw U, K. T., Moeng, C. H., and Sullivan, P. P.: 1998, 'Turbulent Statistics of Neutrally Stratified Flow within and above a Sparse Forest from Large-Eddy Simulation and Field Observations', Boundary-Layer Meteorol. 88, 363-397.Google Scholar
  37. Su, H.-B., Shaw, R. H., and Paw U, K. T.: 2000a, 'Two-Point Correlation Analysis of Neutrally Stratified Flow within and above a Forest from Large-Eddy Simulation', Boundary-Layer Meteorol. 94, 423-460.Google Scholar
  38. Su, H.-B., Schmid, H. P., Grimmond, C. S. B., Vogel, C. S., and Curtis, P. S.: 2000b, 'Temporal and Spatial Variability of Mean Flow and Turbulence Characteristic over a Deciduous Forest', in Preprints, 14th Symposium on Boundary Layers and Turbulence, 7-11 August 2000, Aspen, CO, American Meteorological Society, Boston, MA, pp. 318-321.Google Scholar
  39. Villani, M. G.: 2002, Turbulence and Diffusion in and over a Forest Environment: Measurements and Modeling, M.S. Thesis, Indiana University, Bloomington, IN, 77 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. G. Villani
    • 1
  • H. P. Schmid
    • 1
  • H.-B. Su
    • 1
  • J. L. Hutton
    • 1
  • C. S. Vogel
    • 2
  1. 1.Atmospheric Science Program, Dept. of GeographyIndiana UniversityBloomingtonU.S.A
  2. 2.University of Michigan Biological StationPellstonU.S.A

Personalised recommendations