Advertisement

General Relativity and Gravitation

, Volume 35, Issue 6, pp 969–990 | Cite as

Inhomogeneous Cosmologies, the Copernican Principle and the Cosmic Microwave Background: More on the EGS Theorem

  • C. A. Clarkson
  • A. A. Coley
  • E. S. D. O'Neill
  • R. A. Sussman
  • R. K. Barrett
Article

Abstract

We discuss inhomogeneous cosmological models which satisfy the Copernican principle. We construct some inhomogeneous cosmological models starting from the ansatz that the all the observers in the models view an isotropic cosmic microwave background. We discuss multi-fluid models, and illustrate how more general inhomogeneous models may be derived, both in General Relativity and in scalar-tensor theories of gravity. Thus we illustrate that the cosmologicalprinciple, the assumption that the Universe we live in is spatially homogeneous, does not necessarily follow from the Copernican principle and the high isotropy of the cosmic microwave background. We also present some new conformally flat two-fluid solutions of Einstein's field equations.

Cosmology Copernican principle Einstein field equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ellis, G. F. R. (1975). Q. J. R. Astron. Soc. 16, 245.Google Scholar
  2. [2]
    Ehlers, J., Geren, P., and Sachs, R. K. (1968). J. Math. Phys. 9, 1344.Google Scholar
  3. [3]
    Ellis, G. F. R., Matravers, D. R., and Treciokas, R. (1983). Ann. Phys. NY 150, 455, 487.Google Scholar
  4. [4]
    Clarkson, C. A., and Barrett, R. K. (1999). Class. Quantum Grav. 16, 3781.Google Scholar
  5. [5]
    Ferrando, J. J., Morales, J. A., and Portilla, M. (1992). Phys. Rev. D 46, 578.Google Scholar
  6. [6]
    Barrett, R. K., and Clarkson, C. A. (2000). Class. Quantum Grav. 17, 5047.Google Scholar
  7. [7]
    Sussman, R. A. (1993). Class. Quantum Grav. 10, 2675.Google Scholar
  8. [8]
    Pompilio, F., and Montuori, M. (2002). Class. Quantum Grav. 19, 203.Google Scholar
  9. [9]
    Carneiro, S., and Mena Marugan, G. A. (2002). In the Proceedings of the 24th Spanish Relativity Meeting (ERE2001)Google Scholar
  10. [10]
    Carneiro, S., Mena Marugan, G. A. (2001). Phys. Rev. D 64, 83502Google Scholar
  11. [11]
    Carneiro, S. (2000). Phys. Rev. D 61, 83506Google Scholar
  12. [12]
    Carneiro, S. (2001). Phys. Rev. D 64, 083502, Preprint gr-qc/0203025Google Scholar
  13. [13]
    Carneiro, S. (2002). Gen. Rel. Grav. 34, 793.Google Scholar
  14. [14]
    Obukhov, Y. N., Chrobok, T., and Scherfner, M. (2002). Phys. Rev. D 66, 043518.Google Scholar
  15. [15]
    Obukhov, Y. N. (1994) Rev. Mod. Phys. 21, 447.Google Scholar
  16. [16]
    Lim, W. C., Nilsson, U. S., and Wainwright, J. (2001). Class. Quantum Grav. 18, 5583.Google Scholar
  17. [17]
    Chimento, L., Jakubi, A., and Pavon, D. (1999) Phys. Rev. D 60, 103501.Google Scholar
  18. [18]
    Obukhov, Y. N. (2000). Preprint astro-ph/0008106.Google Scholar
  19. [19]
    Coley, A. A., and McManus, D. J., (1994). Class. Quantum Grav. 11, 1261.Google Scholar
  20. [20]
    Brans, C., and Dicke, R. H. (1961). Phys. Rev. 124, 925Google Scholar
  21. [21]
    Dicke, R. H. (1962). Phys. Rev. 125, 2163.Google Scholar
  22. [22]
    Green, M. B., Schwarz, J. H., and Witten, E. (1988). Superstring Theory, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  23. [23]
    Applequist, T., Chodos, A., and Freund, P. G. O. (1987). Modern Kaluza-Klein Theories, Addison-Wesley, Redwood City.Google Scholar
  24. [24]
    Clarkson, C. A., Coley, A. A., and O'Neill, E. S. D. (2001). Phys. Rev. D 64, 063510.Google Scholar
  25. [25]
    Mimoso, J. P., and Wands, D. (1995). Phys. Rev. D 52, 5612Google Scholar
  26. [26]
    Mimoso, J. P., and Wands, D. (1995). Phys. Rev. D 51, 477.Google Scholar
  27. [27]
    Kolassis, C. A., Santos, N. O., and Tsoubelis, D. (1988). Class. Quantum Grav. 5, 1329.Google Scholar
  28. [28]
    Ellis, G. F. R., van Elst, H. (1999). In Theoretical and Observational Cosmology, Lachièze-Rey, M. (Ed.), Kluwer, Dordrecht, The Netherlands, pp. 1-116; Preprint gr-qc/9812046.Google Scholar
  29. [29]
    Sussman, R. A. (1989). Phys. Rev. D 40, 1364.Google Scholar
  30. [30]
    Ratra, B., and Peebles, P. J. E. (1988) Phys. Rev. D 37, 3406.Google Scholar
  31. [31]
    Wetterich, C. (1988). Nucl. Phys. B 302, 668.Google Scholar
  32. [32]
    Zlatev, I., Wang, L., and Steinhardt, P. J. (1999). Phys. Rev. Lett. 82, 896.Google Scholar
  33. [33]
    Stoeger, W. R., Maartens, R., and Ellis, G. F. R. (1995). Ap. J. 443, 1Google Scholar
  34. [34]
    Maartens, R., Ellis, G. F. R., and Stoeger, W. R. (1995). Phys. Rev. D, 51, 1525and 5942Google Scholar
  35. [35]
    Maartens, R., Ellis, G. F. R., and Stoeger, W. R. 1996, Ap. J. 309, L7.Google Scholar
  36. [36]
    Wainwright, J., and Ellis, G. F. R. (1997). Dynamical Systems in Cosmology, Cambridge University Press, Cambridge.Google Scholar
  37. [37]
    Nilsson, U. S., Wainwrigh, J., and Lim, W. C. (1999). Ap. J. Letts. 522, L1.Google Scholar
  38. [38]
    Wainwright J., Hancock, M., and Uggla, C. (1999). Class. and Quantum Grav. 16, 2577.Google Scholar
  39. [39]
    Sunyaev, R.-A., and Zel'dovich, Y.-B. (1969). Astrophys. & Space Sci. 4, 301.Google Scholar
  40. [40]
    Goodman, J. (1995). Phys. Rev. D, 52, 1821.Google Scholar
  41. [41]
    Maartens, R., Ellis, G. F. R., and Stoeger, W. R. (1996). Astron. Astrophys. 309, L7.Google Scholar
  42. [42]
    Kramer, D., Stephani, H., Herit, E., and MacCallum, M. A. H. (1980). Exact Solutions of Einstein's Feld Equations, Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • C. A. Clarkson
    • 1
    • 2
  • A. A. Coley
    • 1
  • E. S. D. O'Neill
    • 1
  • R. A. Sussman
    • 3
  • R. K. Barrett
    • 4
  1. 1.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada
  2. 2.Relativity and Cosmology Group, Department of Mathematics and Applied MathematicsUniversity of Cape Town, RondeboschCape TownSouth Africa
  3. 3.Instituto de Ciencias NuclearesUNAMMexico D. F.Mexico
  4. 4.Astronomy and Astrophysics group, Department of Physics and AstronomyUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations