Conservation Genetics

, Volume 4, Issue 3, pp 383–391 | Cite as

Molecular and morphological differentiation in Limonium dufourii (Plumbaginaceae), an endangered Mediterranean plant

  • Sacramento Rodríguez
  • María Luisa Palop
  • Carmen Palacios
  • Fernando González-CandelasEmail author


We have analyzed the morphological andmolecular variation in individuals from aLimonium dufourii population in which we hadpreviously described the presence of twomarkedly different molecular haplotypes bymeans of RAPDs and AFLPs. Ten differentmorphological variables were scored in each of72 individuals and their molecular haplotypegroup was established by RAPD analysis. Thevariation observed in the 10 morphometricvariables was explained by four dimensions in aprincipal components analysis, and a plot ofeach individual in the plane defined by the twofirst dimensions did not show any significantgrouping until the molecular haplotype wasincorporated into the plot. A discriminantanalysis performed using the molecularhaplotype as the grouping variable resulted in88.9% of correctly classified cases, thusreflecting a high correlation betweenmorphometric and molecular variation in theseindividuals. We discuss the relevance of thiscorrelation for the conservation strategypreviously proposed for this species.

Limonium molecular fingerprinting morphometric variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allard RW, García P, Sáenz-de-Miera LE, Pérez de la Vega M (1993) Evolution of multilocus genetic structure in Avena hirtula and Avena barbata. Genetics, 134, 1125-1139.Google Scholar
  2. Begun DJ, Aquadro CF (1994) Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of Drosophila: Selection and geographic differentiation. Genetics, 136, 155-171.Google Scholar
  3. Berry RJ (1971) Conservation aspects of the genetical constitution of populations. In: The Scientific Management of Animal and Plant Communities for Conservation (eds. Duffey E, Watt AS), pp. 177-206. Blackwell Scientific, Oxford.Google Scholar
  4. Bonnin I, Prosperi J-M, Olivieri I (1996) Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): A comparative analysis of population structure. Genetics, 143, 1795-1805.Google Scholar
  5. Bremer B, Struwe L (1992) Phylogeny of the Rubiaceae and the Loganiaceae: Congruence or conflict between morphological and molecular data. Amer. J. Bot., 79, 1171-1184.Google Scholar
  6. Caughley G (1994) Directions in conservation biology. J.Animal Ecology, 63, 215-244.Google Scholar
  7. Doyle J (1991) DNA protocols for plants. In: Molecular Techniques in Taxonomy (eds. Hewitt GM, Johnston AWB, Young JPW), pp. 101-115. Springer Verlag, Berlin.Google Scholar
  8. Eguiarte LE, Pérez-Nasser N, Piñero D (1992) Genetic structure, outcrossing rate and heterosis in Astrocaryum mexicanum (tropical palm): Implications for evolution and conservation. Heredity, 69, 217-228.Google Scholar
  9. Falk DA, Holsinger KE (1991) Genetics and Conservation of Rare Plants. Oxford Univ. Press, New York.Google Scholar
  10. Felsenstein J (1986) Population differences in quantitative characters and gene frequencies: A comment on a paper by Lewontin and Rogers. The American Naturalist, 127, 731-732.Google Scholar
  11. Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge.Google Scholar
  12. Franklin IR (1980) Evolutionary changes in small populations. In: Conservation Biology: An Evolutionary-ecological Perspective (eds. Soulé ME, Wilcox BA), pp. 135-149. Sinauer, Sunderland, MA.Google Scholar
  13. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics, 11, 1-21.Google Scholar
  14. Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: Implications for conservation biology. In: Genetics and Conservation of Rare Plants (eds. Falk DA, Holsinger KE), pp. 75-86. Oxford University Press, New York.Google Scholar
  15. Heywood JS, Levin DA (1985) Association between allozyme frequencies and soil characteristics in Gaillardia pulchella (Compositae). Evolution, 39, 1076-1086.Google Scholar
  16. Hoelzel AR (1992) Conservation genetics of whales and dolphins. Molecular Ecology, 1, 119-125.Google Scholar
  17. Huenneke LF (1991) Ecological implications of variation in plant populations. In: Genetics and Conservation of Rare Plants (eds. Falk DA, Holsinger KE), pp. 31-44. Oxford, New York.Google Scholar
  18. Hutchings JA, Ferguson MM (1992) The independence of enzyme heterozygosity and life-history data in natural populations of Salvelinus fontinalis (brook trout). Heredity, 69, 496-502.Google Scholar
  19. Ingrouille MJ (1984) A taxometric analysis of Limonium (Plumbaginaceae) in Western Europe. Plant Systematics and Evolution, 147, 103-118.Google Scholar
  20. Ingrouille MJ, Stace CA (1986) The Limonium binervosum aggregate (Plumbaginaceae) in the British Isles. Botanical Journal of the Linnaean Society, 92, 177-217.Google Scholar
  21. Karron JD (1989) Breeding systems and levels of inbreeding depression in geographically restricted and widespread species of Astragalus (Fabaceae). American Journal of Botany, 76, 331-340.Google Scholar
  22. Lande R, Barrowclough GF (1987) Effective population size genetic variation and their use in population mangement. In: Viable Populations for Conservation (ed. Soulé ME), pp. 87-123. Cambridge University Press, Cambridge.Google Scholar
  23. Lewontin RC (1984) Detecting population differences in quantitative characters as opposed to gene frequencies. The American Naturalist, 123, 115-124.Google Scholar
  24. Lönn M (1993) Genetic structure and allozyme-microhabitat associations in Bromus hordeaceus. Oikos, 68, 99-106.Google Scholar
  25. Lynch M (1996) Quantitative genetics in conservation. In: Conservation Genetics. Case Histories from Nature (eds. Avise JC, Hamrick JL), pp. 471-501. Chapman &; Hall, New York.Google Scholar
  26. Meagher TR, Antonovics J, Primack RB (1978) Experimental ecological genetics in Plantago. III. Genetic variation and demography in relation to survival of Plantago cordata, a rare species. Biological Conservation, 14, 243-257.Google Scholar
  27. Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: Beyond the maintenance of marker diversity. Molecular Ecology, 3, 423-435.Google Scholar
  28. Miyamoto MM (1996) A congruence study of molecular and morphological data for eutherian mammals. Molecular Phylogenetics and Evolution, 6, 373-390.Google Scholar
  29. Nei M, Maruyama T, Chakravorti R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.Google Scholar
  30. Nevo E, Beiles A, Kaplan D, Golenberg EM, Olsvig-Whittaker L (1986) Natural selection of allozyme polymorphisms: A microsite test revealing ecological genetic differentiation in wild barley. Evolution, 40, 13-20.Google Scholar
  31. Nevo E, Noy-Meir I, Beiles A, Krugman T, Agami M (1991) Natural selection of allozyme polymorphisms: Micro-geographic spatial and temporal ecological differentiations in wild emmer wheat. Israel Journal of Botany, 40, 419-449.Google Scholar
  32. Palacios C, González-Candelas F (1997) Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae). Mol. Ecol., 6, 1107-1121.Google Scholar
  33. Palacios C, Kresovich S, González-Candelas F (1999) A population genetic study of the endangered plant species Limonium dufourii (Plumbaginaceae) based on amplified fragment length polymorphism (AFLP). Mol. Ecol., 8, 645-657.Google Scholar
  34. Patterson C, Williams DM, Humphries CJ (1993) Congruence between molecular and morphological phylogenies. Annu. Rev. Ecol. Syst., 24, 153-188.Google Scholar
  35. Polans NO, Allard RW (1989) An experimental evaluation of the recovery potential of ryegrass populations from genetic stress resulting from restriction of population size. Evolution, 43, 1320-1324.Google Scholar
  36. Rogers AR (1986) Population differences in quantitative characters as opposed to gene frequencies. The American Naturalist, 127, 729-730.Google Scholar
  37. Rohlf FJ (1993) NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System Version 1.80. Exeter Software, Setauket, NY.Google Scholar
  38. Schaal BA, Leverich WJ, Rogstad SH (1991) A comparison of methods of assessing genetic variation in plant conservation biology. In: Genetics and Conservation of Rare Plants (eds. Falk DA, Holsinger KE), pp. 123-134. Oxford University Press, New York.Google Scholar
  39. Schemske DW, Husband BC, Ruckelshaus MH, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology, 75, 584-606.Google Scholar
  40. Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas L (eds.) (1983) Genetics and Conservation. Benjamin/Cummings Publ. Co., Menlo Park, CA.Google Scholar
  41. Sokal RR, Rohlf FJ (1995) Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman &; Co., New York.Google Scholar
  42. Soulé ME (1987) Where do we go from here? In: Viable Populations for Conservation (ed. Soulé ME), pp. 175-183. Cambridge University Press, Cambridge.Google Scholar
  43. Vrijenhoek RC (1987) Population genetics and conservation. In: Conservation for the 21st Century (eds. Western D, Pearl MC), pp. 89-98. Oxford University Press, New York.Google Scholar
  44. Whitlock M (1993) Lack of correlation between heterozygosity and fitness in forked fungus beetles. Heredity, 70, 574-581.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sacramento Rodríguez
    • 1
  • María Luisa Palop
    • 1
  • Carmen Palacios
    • 1
  • Fernando González-Candelas
    • 1
    Email author
  1. 1.Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de GenèticaUniversitat de ValènciaValenciaSpain

Personalised recommendations