Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite

  • S. M. Zhang
  • F. Z. Cui
  • S. S. Liao
  • Y. Zhu
  • L. Han


Porous nano-hydroxyapatite/collagen/alginate (nHAC/Alginate) composite containing nHAC and Ca-crosslinked alginate is synthesized biomimetically. This composite shows a significant improvement in mechanical properties over nHAC material. Mechanical test results show that the compressive modulus and yield strength of this composite are in direct proportion to the percentage of Ca-crosslinked alginate in the composite. Primary biocompatibility experiments in vitro including fibroblasts and osteoblasts co-culture with nHAC/alginate composite indicated the high biocompatibility of this composite. Therefore the composite can be a promising candidate of scaffold material for bone tissue engineering.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Z. Wang, F. Z. Cui, H. B. Lu, H. B. Wen, C. L. Ma and H. D. Li, J. Mater. Sci. Lett. 14 (1995) 490.Google Scholar
  2. 2.
    S. Itoh, M. Kikuchi et al., J. Biomed. Mater. Res. 54 (2001) 445.Google Scholar
  3. 3.
    M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya and J. Tanaka, Biomaterials 22 (2001) 1705.Google Scholar
  4. 4.
    S. H. Rhee and J. Tanaka, J. Am. Ceram. Soc. 84 (2001) 459.Google Scholar
  5. 5.
    M. C. Chang, T. Ikoma, M. Kikuchi and J. Tanaka, J. Mater. Sci. Lett. 20 (2001) 1199.Google Scholar
  6. 6.
    T. Ikoma, T. Muneta and J. Tanaka, Bioceram. Key Eng. Mater. 192-1 (2000) 487.Google Scholar
  7. 7.
    C. Du, F. Z. Cui, X. D. Zhu and K. De Groot, J. Biomed. Mater. Res. 44 (1999) 407.Google Scholar
  8. 8.
    C. Du, F. Z. Cui, W. Zhang, Q. L. Feng, X. D. Zhu and K. De Groot, ibid. 50 (2000) 518.Google Scholar
  9. 9.
    C. Du, F. Z. Cui, Q. L. Feng et al., ibid. 42 (1998) 540.Google Scholar
  10. 10.
    H. P. HaoPractice for Standard Biological Evaluation of Materials for Medical Devices (Standard Press of China, Beijing, 2000) pp. 100-110.Google Scholar
  11. 11.
    S. L. Ishaug, M. J. Yaszemski, R. Bizios and A. G. Mikos, J. Biomed. Mater. Res. 28 (1994) 1445.Google Scholar
  12. 12.
    D. A. Puleo, L. A. Holleran, R. H. Doremus and R. Bizios, ibid. 25 (1991) 711.Google Scholar
  13. 13.
    O. H. Lowry, N. R. Roberts, M. Wu, W. S. Hixton and E. J. Crawford, J. Biochem. 207 (1954) 19.Google Scholar
  14. 14.
    M. Lieberherr, J. Vreven and G. Vaes, Biochem. Biophys Acta 293 (1973) 160.Google Scholar
  15. 15.
    J. J. Klawitter and S. F. Hulbert, J. Biomed. Mater. Res. Symp. 2 (1971) 161.Google Scholar
  16. 16.
    J. E. Dennis, S. E. Haynesworth, R. G. Young and A. I. Caplan, Cell Transplant 1 (1992) 23.Google Scholar
  17. 17.
    M. D. Guiry and G. BlundenSeaweed Resources in Europe: Uses and Potential (John Wiley & Sons, Ltd. 1991) p. 219.Google Scholar
  18. 18.
    F. Binette, D. P. Mcquaid, D. R. Haudenschild, P. C. Yaeger, J. M. Mcpherson and R. Tubo, J. Orth. Res. 16 (1998) 207.Google Scholar
  19. 19.
    J. Guo, G. Jourdin and D. K. Maccallum, Conn. Tiss. Res. 19 (1989) 277.Google Scholar
  20. 20.
    A. Atala, L. G. Cima, W. Kim, K. T. Paige, J. P. Vacanti, A. B. Retik and C. A. Vacanti, J. Urol. 150 (1993) 745.Google Scholar
  21. 21.
    W. J. C. M. Marijnissen, G. J. V. M. Van Osch et al., Biomaterials 23 (2002) 1511.Google Scholar
  22. 22.
    A. E. Baer, J. Y. Wang, V. B. Kraus and L. A. Setton, J. Orth. Res. 19 (2001) 2.Google Scholar
  23. 23.
    M. Maruyama, J. Biomed. Mater. Res. 29 (1995) 683.Google Scholar
  24. 24.
    M. Maruyama, K. Terayama, M. Ito, T. Takei and E. Kitagawa, ibid. 29 (1995) 329.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • S. M. Zhang
    • 1
  • F. Z. Cui
    • 1
  • S. S. Liao
    • 1
  • Y. Zhu
    • 1
  • L. Han
    • 1
  1. 1.Department of Materials Science &Engineering, Tsinghua UniversityBeijingRepublic of China

Personalised recommendations