Mathematical Physics, Analysis and Geometry

, Volume 6, Issue 2, pp 139–179

Separation of Variables for Bi-Hamiltonian Systems

  • Gregorio Falqui
  • Marco Pedroni

DOI: 10.1023/A:1024080315471

Cite this article as:
Falqui, G. & Pedroni, M. Mathematical Physics, Analysis and Geometry (2003) 6: 139. doi:10.1023/A:1024080315471


We address the problem of the separation of variables for the Hamilton–Jacobi equation within the theoretical scheme of bi-Hamiltonian geometry. We use the properties of a special class of bi-Hamiltonian manifolds, called ωN manifolds, to give intrisic tests of separability (and Stäckel separability) for Hamiltonian systems. The separation variables are naturally associated with the geometrical structures of the ωN manifold itself. We apply these results to bi-Hamiltonian systems of the Gel'fand–Zakharevich type and we give explicit procedures to find the separated coordinates and the separation relations.

Hamilton–Jacobi equations separation of variables Nijenhuis structures bi-Hamiltonian manifolds 

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Gregorio Falqui
    • 1
  • Marco Pedroni
    • 2
  1. 1.SISSATriesteItaly. e-mail
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItaly

Personalised recommendations