Advertisement

Journal of Atmospheric Chemistry

, Volume 45, Issue 1, pp 51–77 | Cite as

Intercomparison of Stratospheric Chemistry Models under Polar Vortex Conditions

  • M. Krämer
  • Ri. Müller
  • H. Bovensmann
  • J. Burrows
  • J. Brinkmann
  • E. P. Röth
  • J.-U. Grooß
  • Ro. Müller
  • Th. Woyke
  • R. Ruhnke
  • G. Günther
  • J. Hendricks
  • E. Lippert
  • K. S. Carslaw
  • Th. Peter
  • A. Zieger
  • Ch. Brühl
  • B. Steil
  • R. Lehmann
  • D. S. McKenna
Article

Abstract

Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4–80% for different 30–50 days long air parcel trajectories, the mean scatter of model results around these values is only about ±1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about ±7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.

participating models scenarios arctic case study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, G., Müller, R., McKenna, D. S., Rex, M., and Carslaw, K. S, 1998: Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with Match results, Geophys. Res. Lett. 25, 4325–4328.Google Scholar
  2. Becker, G., Müller, R., McKenna, D. S., Rex, M., Carslaw, K. S., and Oelhaf, H., 2000a: Ozone loss rates in the Arctic stratosphere in the winter 1994/1995: Model simulations underestimate results of the Match analysis, J. Geophys. Res. 105, 15,175–15,184.Google Scholar
  3. Becker, G., Grooß, J. U., McKenna, D. S, and Müller, R., 2000b: Stratospheric photolysis frequencies: Impact of an improved numerical solution on the radiative transfer equation, J. Atmos. Chem. 37, 217–229.Google Scholar
  4. Blindauer, C., Vozanov, V., and Burrows, J. P., 1996: Actinic flux and photolysis frequency comparison computatins using the Model PHOTOGT, J. Atmos. Chem. 24, 1–24.Google Scholar
  5. Brasseur, G., Hitchman, M. H., Walters, S., Dymek, M., Falise, E., and Pirre, M., 1990: An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere, J. Geophys. Res. 95, 5639–5655.Google Scholar
  6. Brasseur, G. P., Tie, X. X., Rasch, P. J., Lefèvre, F., 1997: A three-dimensional simulation of the Antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere, J. Geophys. Res. 102, 8909–8930.Google Scholar
  7. Brühl, C. and Crutzen, P. J., 1989: On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation, Geophys. Res. Lett. 16, 703–706.Google Scholar
  8. Carslaw, K., Luo, B., and Peter, T., 1995: An analytic expression for the composition of aqueous HNO3-H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett. 22, 1877–1880.Google Scholar
  9. Carslaw, K., Peter, T., and Clegg, S. L., 1997: Modeling the composition of liquid stratospheric aerosols, Rev. Geophys. 35(2), 125–153.Google Scholar
  10. Carver, G., Brown, P., and Wild, O., 1997: The ASAD atmospheric chemistry integration package and chemical reaction data base, Comp. Phys. Comm. 105, 197–215.Google Scholar
  11. Crutzen, P. J. and Schmailzl, U., 1983: Chemical budgets of the stratosphere, Planet. Space Sci. 31, 1009–1032.Google Scholar
  12. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 97-4, Jet Propulsion Laboratory, Pasadena.Google Scholar
  13. Finkbeiner, M., Crowley, J. N., Horie, O., Müller, R., Moortgat, G. K., and Crutzen, P. J., 1995: The reaction between HO2 and ClO: Product formation between 210 K and 300 K, J. Phys. Chem. 99, 16,264–16,275.Google Scholar
  14. Gidel, L. T., Crutzen, P. J., and Fishman, J., 1983: A two-dimensional photochemical model of the atmosphere; 1. Chlorocarbon emissions and their effect on stratospheric ozone, J. Geophys. Res. 88, 6622–6640.Google Scholar
  15. Goutail, F. et al., 1999: Total ozone depletion in the Arctic during the winters of 1993–94 and 1994–95, J. Atmos. Chem. 32, 35–59.Google Scholar
  16. Granier, C. and Brasseur, G., 1992: Impact of heterogeneous chemistry on model predictions of ozone changes, J. Geophys. Res. 97, 18,015–18,033.Google Scholar
  17. Grooß, J.-U., 1996: Modelling of stratospheric chemistry based on HALOE/UARS satellite data, PhD Thesis, University of Mainz.Google Scholar
  18. Günther, G., Krüger, B. C., and Ebel, A., 1995: Chemistry and transport at the vortex edge in the presence of breaking planetary waves, Polar Stratospheric Ozone, Pub.: European Commission, Air Pollution Report 56, 32–37.Google Scholar
  19. Hansen, G., Svenøe, T., Chipperfield, M. P., Dahlback, A., and Hoppe, U.-P., 1997: Evidence of substantial ozone depletion in winter 1996/96 over Northern Norway, Geophys. Res. Lett. 24, 799–802.Google Scholar
  20. Hanson, D. R. and Mauersberger, K., 1988: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett. 15, 855–858.Google Scholar
  21. Hendricks, J., Lippert, E., Petry, H., and Ebel, A., 1999: Heterogeneous reactions on and in sulfate aerosols: Implications for the chemistry of the midlatitude tropopause region, J. Geophys. Res. 104, 5531–5550.Google Scholar
  22. Krüger, B. C. and Fabian, P., 1986: Model calculations about the reduction of atmospheric ozone by different halogenated hydrocarbons, Ber. Bunsenges. Phys. Chem. 90, 1062–1066.Google Scholar
  23. Lary, D. J. and Pyle, J. A., 1991: Diffuse radiation, twilight, and photochemistry – I, J. Atmos. Chem. 13, 373–406.Google Scholar
  24. Lipson, J. B., Elrond, M. J., Beiderhase, T. W., Molina, L. T., and Molina, M. J., 1997: Temperature dependence of the rate constant and branching ratio for the OH + ClO reaction, J. Chem. Soc., Faraday Trans. 93, 2665–2673.Google Scholar
  25. Madronich, S., 1987: The atmosphere and UV-B radiation at ground level, Environmental UV Photobiology, New York.Google Scholar
  26. Müller, R., Crutzen, P. J., Grooß, J.-U., Brühl, C., Russel III, J. M., and Tuck, A. F., 1996: Chlorine activation and ozone depletion in the Arctic vortex: Observations by the halogen occultation experiment on the upper atmospheric research satellite, J. Geophys. Res. 101, 12,531–12,554.Google Scholar
  27. Park, J. H., Ko, M. K. W., Jackman, C. H., Plumb, R. A., Kaye, J. A., and Sage, K. A., 1999: Models and Measurements Intercomparison II, NASA Report, NASA/TM-1999-209554.Google Scholar
  28. Pierson, J. M., McKinney, K. A., Toohey, D. W., Margitan, J., Schmidt, U., Engel, A., and Newman, P. A., 1999: An investigation of ClO photochemistry in the chemically perturbed Arctic vortex, J. Atmos. Chem. 32, 61–81.Google Scholar
  29. Rex, M. et al., 1998: In situ measurements of stratospheric ozone depletion rates in the Arctic winter 1991/92: A Lagrangian approach, J. Geophys. Res. 103, 5843–5853.Google Scholar
  30. Rex, M., Lehmann, R., Salawitch, R. J., Santee, M. L., and Waters, J. W., 2000: Theory and observation of Arctic ozone loss rates, Proceedings of the Quadrennial Ozone Symposium, Sapporo, Japan, pp. 249–250.Google Scholar
  31. Röth, E.-P., 1992: A fast algorithm to calculate the photonflux in optically dense media for use in photochemical models, Ber. Bunsenges. Phys. Chem. 96, 417–420.Google Scholar
  32. Ruhnke, R., Kouker, W., and Reddmann, T., 1999: The influence of the OH + NO2 + M reaction on the NOy partitioning in the Arctic winter 1992/93 as studied with KASIMA J. Geophys. Res. 104, 3755–3772.Google Scholar
  33. Woyke, T., Müller, R., Stroh, F., McKenna, D. S., Engel, A., Margitan, J. J., Rex, M., and Carslaw, K. S., 1999: A test of our understanding of ozone chemistry in the Arctic polar vortex using in-situ measurements of ClO, BrO, and O3 in the 1994/95 winter, J. Geophys. Res. 104, 18,755–18,768.Google Scholar
  34. Zdunkowski, W. G. 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds, Beitr. Phys. Atm. 53, 147–166.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • M. Krämer
    • 1
  • Ri. Müller
    • 2
  • H. Bovensmann
    • 2
  • J. Burrows
    • 2
  • J. Brinkmann
    • 3
    • 4
  • E. P. Röth
    • 3
    • 4
  • J.-U. Grooß
    • 4
  • Ro. Müller
    • 4
  • Th. Woyke
    • 4
  • R. Ruhnke
    • 4
  • G. Günther
    • 4
    • 5
  • J. Hendricks
    • 5
  • E. Lippert
    • 5
  • K. S. Carslaw
    • 6
  • Th. Peter
    • 6
  • A. Zieger
    • 6
  • Ch. Brühl
    • 6
  • B. Steil
    • 6
  • R. Lehmann
    • 6
  • D. S. McKenna
    • 1
  1. 1.Forschungszentrum JülichInst. für Stratosphärische Chemie (ICG-1)JülichGermany
  2. 2.Inst. für UmweltphysikUniversität BremenBremenGermany
  3. 3.Inst. für Physikalische ChemieUniversität EssenEssenGermany;
  4. 4.Forschungszentrum JülichInst. für Stratosphärische Chemie (ICG-1)JülichGermany
  5. 5.Inst. für Geophysik und MeteorologieUniversität zu KölnKölnGermany
  6. 6.Abt. Chemie der AtmosphäreMax-Planck-Institut für Chemie MainzMainzGermany

Personalised recommendations