Advertisement

Journal of Biomolecular NMR

, Volume 26, Issue 4, pp 297–315 | Cite as

Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy

  • Zhengrong Wu
  • Frank Delaglio
  • Nico Tjandra
  • Victor B. Zhurkin
  • Ad Bax
Article

Abstract

The solution structure of d(CGCGAATTCGCG)2 has been determined on the basis of an exceptionally large set of residual dipolar couplings. In addition to the heteronuclear 13C-1H and 15N-1H and qualitative homonuclear 1H-1H dipolar couplings, previously measured in bicelle medium, more than 300 quantitative 1H-1H and 22 31P-1H dipolar restraints were obtained in liquid crystalline Pf1 medium, and 22 31P chemical shift anisotropy restraints. High quality DNA structures can be obtained solely on the basis of these new restraints, and these structures are in close agreement with those calculated previously on the basis of 13C-1H and 15N-1H dipolar couplings. In the newly calculated structures, 31P-1H dipolar and 3JsubH3Psub couplings and 31P CSA data restrain the phosphodiester backbone torsion angles. The final structure represents a quite regular B-form helix with a modest bending of ∼10°, which is essentially independent of whether or not electrostatic terms are used in the calculation. Combined, the number of homo- and heteronuclear dipolar couplings significantly exceeds the number of degrees of freedom in the system. Results indicate that the dipolar coupling data cannot be fit by a single structure, but are compatible with the presence of rapid equilibria between C2-endo and C3-endo deoxyribose puckers (sugar switching). The C2-H2/H2′′ dipolar couplings in B-form DNA are particularly sensitive to sugar pucker and yield the largest discrepancies when fit to a single structure. To resolve these discrepancies, we suggest a simplified dipolar coupling analysis that yields N/S equilibria for the ribose sugar puckers, which are in good agreement with previous analyses of NMR JHH couplings, with a population of the minor C3-endo form higher for pyrimidines than for purines.

chemical shift anisotropy Dickerson dodecamer dipolar coupling liquid crystal NMR sugar pucker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allain, F.H.T. and Varani, G. (1997) J. Mol. Biol., 267, 338–351.Google Scholar
  2. Barrientos, L.G., Dolan, C. and Gronenborn, A.M. (2000) J. Biomol. NMR, 16, 329–337.Google Scholar
  3. Bax, A. and Lerner, L. (1988) J. Magn. Reson., 79, 429–438.Google Scholar
  4. Bayer, P., Varani, L. and Varani, G. (1999) J. Biomol. NMR, 14, 149–155.Google Scholar
  5. Berman, H.M. (1997) Biopolymers, 44, 23–44.Google Scholar
  6. Bewley, C.A. and Clore, G.M. (2000) J. Am. Chem. Soc., 122, 6009–6016.Google Scholar
  7. Boisbouvier, J., Brutscher, B., Pardi, A., Marion, D. and Simorre, J.P. (2000) J. Am. Chem. Soc., 122, 6779–6780.Google Scholar
  8. Bonvin, A. and Brunger, A.T. (1995) J. Mol. Biol., 250, 80–93.Google Scholar
  9. Brunger, A.T. (1992) Nature, 355, 472–475.Google Scholar
  10. Brunger, A.T. (1993) XPLOR Manual Version 3.1, Yale University, New Haven, CT.Google Scholar
  11. Calladine, C.R. (1982) J. Mol. Biol., 161, 343–52.Google Scholar
  12. Chiu, T.K. and Dickerson, R.E. (2000) J. Mol. Biol., 301, 915–945.Google Scholar
  13. Chiu, T.K., Kaczor-Grezeskowiak, M. and Dickerson, R.E. (1999) J. Mol. Biol., 292, 589–608.Google Scholar
  14. Clore, G.M. (2000) Proc. Natl. Acad. Sci. USA, 97, 9021–9025.Google Scholar
  15. Clore, G.M. and Garrett, D.S. (1999) J. Am. Chem. Soc., 121, 9008–9012.Google Scholar
  16. Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571–10572.Google Scholar
  17. Coll, M., Frederick, C.A., Wang, A.H.J. and Rich, A. (1987) Proc. Natl. Acad. Sci. USA, 84, 8385–8389.Google Scholar
  18. Cornilescu, G. and Bax, A. (2000) J. Am. Chem. Soc., 122, 10143–10154.Google Scholar
  19. Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836–6837.Google Scholar
  20. Crothers, D.M. (1998) Proc. Natl. Acad. Sci. USA, 95.Google Scholar
  21. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) 6, 277–293.Google Scholar
  22. Delaglio, F., Wu, Z.R. and Bax, A. (2001) J. Magn. Reson., 149, 276–281.Google Scholar
  23. Denisov, V.P. and Halle, B. (2000) Proc. Natl. Acad. Sci. USA, 97, 629–633.Google Scholar
  24. Dickerson, R., Goodsell, D., Kopka, M. and Pjura, P. (1987) J. Biomol. Struct. Dyn., 5, 557–579.Google Scholar
  25. Dickerson, R.E. (1983) J. Mol. Biol., 166, 419–441.Google Scholar
  26. Dickerson, R.E. and Drew, H.R. (1981) J. Mol. Biol., 149, 761–786.Google Scholar
  27. Dickerson, R.E., Goodsell, D. and Kopka, M.L. (1996) J. Mol. Biol., 256, 108–125.Google Scholar
  28. DiGabriele, A.D., Sanderson, M.R. and Steitz, T.A. (1989) Proc. Natl. Acad. Sci. USA, 86, 1816–1820.Google Scholar
  29. Drew, H.R. and Dickerson, R.E. (1981) J. Mol. Biol., 151, 535–556.Google Scholar
  30. Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K. and Dickerson, R.E. (1981) Proc. Natl. Acad. Sci. USA, 78, 2179–2183.Google Scholar
  31. Felli, I.C., Richter, C., Griesinger, C. and Schwalbe, H. (1999) J. Am. Chem. Soc., 121, 1956–1957.Google Scholar
  32. Fischer, M., Losonczi, J., Weaver, J. and Prestegard, J. (1999) Biochemistry, 38, 9013–9022.Google Scholar
  33. Fratini, A.V., Kopka, M.L., Drew, H.R. and Dickerson, R.E. (1982) J. Biol. Chem., 257, 14686–14707.Google Scholar
  34. Gorin, A.A., Ulyanov, N.B. and Zhurkin, V.B. (1990) Mol. Biol., 24, 1036–1047.Google Scholar
  35. Gorler, A., Ulyanov, N.B. and James, T.L. (2000) J. Biomol. NMR, 16, 147–164.Google Scholar
  36. Goto, N., Skrynnikov, N., Dahlquist, F. and Kay, L. (2001) J. Mol. Biol., 308, 745–764.Google Scholar
  37. Gronenborn, A. and Clore, G. (1989) Biochemistry, 28, 5978–5984.Google Scholar
  38. Hansen, M.R., Mueller, L. and Pardi, A. (1998) Nat. Struct. Biol., 5, 1065–1074.Google Scholar
  39. Hare, D.R., Wemmer, D.E., Chou, S.H., Drobny, G. and Reid, B.R. (1983) J. Mol. Biol., 171, 319–336.Google Scholar
  40. Henning, M., Carlomagno, T. and Williamson, J.R. (2001) J. Am. Chem. Soc., 123, 3395–3396.Google Scholar
  41. Hud, N.V. and Feigon, J. (1997) J. Am. Chem. Soc., 119, 5756–5757.Google Scholar
  42. Hud, N.V., Sklenar, V. and Feigon, J. (1999) J. Mol. Biol., 286, 651–660.Google Scholar
  43. Iwahara, J., Wojciak, J.M. and Clubb, R.T. (2001) J. Magn. Reson., 153, 262–266.Google Scholar
  44. Kamath, S., Sarma, M.H., Zhurkin, V.B., Turner, C.J. and Sarma, R.H. (2000) J. Biomol. Struct. Dyn., S2, 317–325.Google Scholar
  45. Kung, H.C., Wang, K.Y., Goljer, I. and Bolton, P.H. (1995) J. Magn. Reson. Ser., B109, 323–325.Google Scholar
  46. Kuszewski, J., Schieters, C. and Clore, M.G. (2001) J. Am. Chem. Soc., 123, 3903–3918.Google Scholar
  47. Lane, A.N., Jenkins, T.C., Brown, T. and Neidle, S. (1991) Biochemistry, 30, 1372–1385.Google Scholar
  48. Lankhorst, P.P., Haasnoot, C.A.G., Erkelens, C. and Altona, C. (1984) J. Biomol. Struct. Dyn., 1, 1387–1405.Google Scholar
  49. LaPlante, S.R., Zanatta, N., Hakkinen, A.W., A.H.-J. and Borer, P.N. (1994) Biochemie, 33, 2430–2440.Google Scholar
  50. Lavery, R. and Sklenar, H. (1988) J. Biomol. Struct. Dyn., 6, 63–91.Google Scholar
  51. MacDonald, D., Herbert, K., Zhang, X.L., Polgruto, T. and Lu, P. (2001) J. Mol. Biol., 306, 1081–1098.Google Scholar
  52. Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1–23.Google Scholar
  53. McConnell, K.J. and Beveridge, D.L. (2000) J. Mol. Biol., 304, 803–820.Google Scholar
  54. Metzler, W., Wang, C., Kitchen, D., Levy, R. and Pardi, A. (1990) J. Mol. Biol., 214, 711–736.Google Scholar
  55. Mollova, E.T., Hansen, M.R. and Pardi, A. (2000) J. Am. Chem. Soc., 122, 11561–11562.Google Scholar
  56. Murphy, E.C., Zhurkin, V.B., Louis, J.M., Cornilescu, G. and Clore, G.M. (2001) J. Mol. Biol., 312, 481–499.Google Scholar
  57. Nelson, H.C., Finch, J.T., Luisi, B.F. and Klug, A. (1987) Nature, 330, 221–226.Google Scholar
  58. Nerdal, W., Hare, D.R. and Reid, B.R. (1989) Biochemistry, 28, 10008–10021.Google Scholar
  59. Ojha, R.P., Dhingra, M.M., Sarma, M.H., Shibata, M., Farrar, M., Turner, C.J. and Sarma, R.H. (1999) Eur. J. Biochem., 265, 35–53.Google Scholar
  60. Olson, W.K. and Zhurkin, V.B. (1995) In Biological Structure and Dynamics, Sarma, R.H. and Sarma, M.H. (Eds.), Adenine Press, Albany, NY, pp. 341–370.Google Scholar
  61. Prosser, R.S., Losonczi, J.A. and Shiyanovskaya, I.V. (1998) J. Am. Chem. Soc., 120, 11010–11011.Google Scholar
  62. Rinkel, L.J., van der marel, G.A., vanBoom, J.H. and Altona, C. (1987) Eur. J. Biochem., 166, 87–101.Google Scholar
  63. Ruckert, M. and Otting, G. (2000) J. Am. Chem. Soc., 122, 7793–7797.Google Scholar
  64. Schwieters, C.D., Kuszewski, J., Tjandra, N. and Clore, G.M. (2003) J. Magn. Reson., 160, 65–73.Google Scholar
  65. Shatzky-Schwartz, M., Arbuckle, N.D., Eisenstein, M., Rabinovich, D., Bareket-Samish, A., Haran, T.E., Luisi, B.F. and Shakked, Z. (1997) J. Mol. Biol., 267, 595–623.Google Scholar
  66. Shui, X., Mcfail-Isom, L., Hu, G.G. and Williams, L.D. (1998a) Biochemistry, 37, 8341–8355.Google Scholar
  67. Shui, X., Sines, C.C., Mcfail-Isom, L., VanDerveer, D. and Williams, L.D. (1998b) Biochemistry, 37, 16877–16887.Google Scholar
  68. Sines, C.C., McFail-Isom, L., Howerton, S.B., VanDerveer, D. and Williams, L.D. (2000) J. Am. Chem. Soc., 122, 11048–11056.Google Scholar
  69. Sklenar, V. and Bax, A. (1987) J. Am. Chem. Soc., 109, 7525–7526.Google Scholar
  70. Skrynnikov, N., Goto, N., Yang, D., Choy, W., Tolman, J., Mueller, G. and Kay, L. (2000) J. Mol. Biol., 295, 1265–1273.Google Scholar
  71. Taylor, R., Kennard, O. and Versichel, W. (1984) J. Am. Chem. Soc., 106, 244–248.Google Scholar
  72. Tereshko, V., Minasov, G. and Egli, M. (1999a) J. Am. Chem Soc., 121, 470–471.Google Scholar
  73. Tereshko, V., Minasov, G. and Egli, M. (1999b) J. Am. Chem. Soc., 121, 3590–3595.Google Scholar
  74. Tian, F., Bolon, P.J. and Prestegard, J.H. (1999) J. Am. Chem. Soc., 121, 7712–7713.Google Scholar
  75. Tian, F., Fowler, C.A., Zartler, E.R., Jenney, F.A., Adams,M.W. and Prestegard, J.H. (2000) J. Biomol. NMR, 18, 23–31.Google Scholar
  76. Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.Google Scholar
  77. Tjandra, N., Grzesiek, S. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6264–6272.Google Scholar
  78. Tjandra, N., Marquardt, J. and Clore, G.M. (2000a) J. Magn. Reson., 142, 393–396.Google Scholar
  79. Tjandra, N., Tate, S., Ono, A., Kainosho, M. and Bax, A. (2000b) J. Am. Chem. Soc., 122, 6190–6200.Google Scholar
  80. Tjandra, N., Tate, S.-i., Ono, A., Kainosho, M. and Bax, A. (2000c) J. Am. Chem. Soc., 122, 6190–6200.Google Scholar
  81. Tolman, J.R., Al-Hashimi, H.M., Kay, L.E. and Prestegard, J.H. (2001) J. Am. Chem. Soc., 123, 1416–1424.Google Scholar
  82. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.Google Scholar
  83. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1997) Nat. Struct. Biol., 4, 292–297.Google Scholar
  84. Tonelli, M. and James, T.L. (1998) Biochemistry, 37, 11478–11487.Google Scholar
  85. Torda, A.E., Scheek, R.M. and van Gunsteren, W.F. (1990) J. Mol. Biol., 214, 223–235.Google Scholar
  86. Trantirek, L., Urbasek, M., Stefl, R., Feigon, J. and Sklenar, V. (2000) J. Am. Chem. Soc., 122, 10454–10455.Google Scholar
  87. Ulyanov, N.B., Gorin, A.A., Zhurkin, V.B., Chen, B.C., Sarma, M.H. and Sarma, R.H. (1992) Biochemistry, 31, 3918–3930.Google Scholar
  88. van Wijk, J., Huckriede, B.D., Ippel, J.H. and Altona, C. (1992) Meth. Enzymol., 211, 286–307.Google Scholar
  89. Varani, G., Aboul-ela, F. and Allain, F.H.-T. (1996) Prog. Nucl. Magn. Reson. Spectrosc., 29, 51–127.Google Scholar
  90. Vermeulen, A., Zhou, H. and Pardi, A. (2000) J. Am. Chem. Soc., 122, 9638–9647.Google Scholar
  91. Wang, J.C. (1979) Nucl. Acids Res., 76, 200–203.Google Scholar
  92. Warren, J.J. and Moore, P.B. (2001) J. Biomol. NMR, 20, 311–323.Google Scholar
  93. Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K. and Dickerson, R.E. (1980) Nature, 287, 755–758.Google Scholar
  94. Woods, K.K., McFail-Isom, L., Sines, C.C., Howerton, S.B., Stephens, R.K. and Williams, L.D. (2000) J. Am. Chem. Soc., 122, 1546–1547.Google Scholar
  95. Wu, Z. and Bax, A. (2001) J. Magn. Reson., 151, 242–252.Google Scholar
  96. Wu, Z., Tjandra, N. and Bax, A. (2001a) J. Biomol. NMR, 19, 367–370.Google Scholar
  97. Wu, Z.R., Tjandra, N. and Bax, A. (2001b) J. Am. Chem. Soc., 123, 3617–3618.Google Scholar
  98. Yang, J., McAteer, K., Silks, L.A., Wu, R., Isern, N.G., Unkefer, C.J. and Kennedy, M.A. (2000) J. Magn. Reson., 146, 260–276.Google Scholar
  99. Young, M.A. and Beveridge, D.L. (1998) J. Mol. Biol., 281, 675–687.Google Scholar
  100. Young, M.A., Ravishanker, G. and Beveridge, D.L. (1997) Biophys. J., 73, 2313–2336.Google Scholar
  101. Zweckstetter, M. and Bax, A. (2000) J. Am. Chem. Soc., 122, 3791–3792.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Zhengrong Wu
    • 1
  • Frank Delaglio
    • 1
  • Nico Tjandra
    • 2
  • Victor B. Zhurkin
    • 3
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical PhysicsNational Institute of Diabetes and Digestive and Kidney DiseasesUSA
  2. 2.Laboratory of Biophysical ChemistryNational Heart, Lung and Blood Institute, National Cancer Institute, National Institutes of HealthBethesdaU.S.A
  3. 3.Laboratory of Experimental and Computational BiologyNational Cancer Institute, National Institutes of HealthBethesdaU.S.A

Personalised recommendations