Advertisement

Biodegradation

, Volume 14, Issue 2, pp 153–168 | Cite as

First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans

  • Antje Legatzki
  • Sylvia Franke
  • Susann Lucke
  • Toni Hoffmann
  • Andreas Anton
  • Dieter Neumann
  • Dietrich H. Nies
Article

Abstract

Quantitative models were derived to explain heavy metal resistance in Ralstonia metallidurans. A ΔczcA deletion of the gene for the central component of the Co2+/Zn2+/Cd2+ efflux system CzcCBA combined with the expression level of czcCBA as studied with a Φ(czcC-lacZ-czcBA) operon fusion demonstrated that CzcCBA was the only prerequisite for resistance to Co2+/Zn2+/Cd2+ at concentrations of 200 μM and above. The cellular content of the CzcA protein (resistance nodulation cell division protein family RND) determined by Western blot was used to model the CzcCBA expression level as the response to various metal concentrations. These data and experimentally determined uptake velocities were used to derive a flow equilibrium model that describes the cytoplasmic content ci of the cells as an interaction between cation uptake and CzcCBA-mediated efflux. Alternatively, binding of heavy metals to inactivated R. metallidurans cells was described with a modified Freundlich's equation. The metal content of growing R. metallidurans cells was determined and compared to the predictions of both models. High amounts of zinc precipitates, exclusively formed by living cells, prevented a model validation for zinc. An additional net efflux activity let to lower amounts of cell-bound Co2+ than predicted. The flow equilibrium model described cadmium resistance sufficiently for R. metallidurans growing in the presence of 0.2–1 mM Cd2+. Description of cadmium resistance in early stationary cells requires the binding model in addition to the flow equilibrium model. Thus, it was possible to simulate physiological events in growing cells by quantitative models that are derived from the biochemical data of the interacting transport proteins.

Alcaligenes cadmium cobalt Ralstonia RND-proteins zinc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiking H, Stijnman A, van Garderen C, van Heerikhuizen H & van't Riet J (1984). Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continous culture. Appl Environ Microbiol 47: 374–377.Google Scholar
  2. Beard SJ, Hashim R, Wu GH, Binet MRB, Hughes MN & Poole RK (2000) Evidence for the transport of zinc(II) ions via the Pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol Lett 184: 231–235.Google Scholar
  3. Borremans B, Hobman JL, Provoost A, Brown NL & van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183: 5651–5658.Google Scholar
  4. Chamnongpol S & Groisman EA (2002) Mg2+ homeostasis and avoidance of metal toxicity. Mol Microbiol 44: 561–571.Google Scholar
  5. Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK & Chakrabarty A (1987) A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas genes. Gene 57: 61–72.Google Scholar
  6. Diels L, Dong Q, van der Lelie D, Baeyens W & Mergeay M(1995a) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Indust Microbiol 14: 142–153.Google Scholar
  7. Diels L, van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D & Leysen R (1995b) The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Membr Sci 100: 248–258.Google Scholar
  8. Goldberg M, Pribyl T, Juhnke S & Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the RND protein family. J Biol Chem 274: 26065–26070.Google Scholar
  9. Goris J, de Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K & Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51: 1773–1782.Google Scholar
  10. Grass G, Große C & Nies DH (2000) Regulation of the cnr cobalt/ nickel resistance determinant from Ralstonia sp. CH34. J Bacteriol 182: 1390–1398.Google Scholar
  11. Große C, Grass G, Anton A, Franke S, Navarrete Santos A, Lawley B, Brown NL & Nies DH (1999) Transcriptional organization of the czc heavy metal homoeostasis determinant from Alcaligenes eutrophus. J Bacteriol 181: 2385–2393.Google Scholar
  12. Juhnke S, Peitzsch N, Hübener & Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179: 15–25.Google Scholar
  13. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.Google Scholar
  14. Kornberg A (1995) Inorganic polyphosphate: Toward making a forgotten polymer unforgettable. J Bacteriol 177: 491–496.Google Scholar
  15. Laemmli U (1970) Cleavage of structural proteins during assembly of bacteriophage T4. Nature 222: 293–298.Google Scholar
  16. Lenz O, Schwartz E, Dernedde J, Eitinger T & Friedrich B (1994) The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J Bacteriol 176: 4385–4393.Google Scholar
  17. Li X-Z, Livermore DM & Nikaido H (1994) Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38: 1732–1741.Google Scholar
  18. Maret W (2002) Optical methods for measuring zinc binding and release, zinc coordination environments in zinc finger proteins, and redox sensitivity and activity of zinc-bound thiols. In Protein Sensors and Reactive Oxygen Species, Pt B, Thiol Enzymes and Proteins (pp. 230–237). Academic Press, San Diego, CA.Google Scholar
  19. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P & van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328–334.Google Scholar
  20. Nies D, Mergeay M, Friedrich B & Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169: 4865–4868.Google Scholar
  21. Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174: 8102–8110.Google Scholar
  22. Nies DH (1995) The cobalt, zinc, and cadmium efflux system Czc-ABC from Alcaligenes eutrophus functions as a cation-proton-antiporter in Escherichia coli. J Bacteriol 177: 2707–2712.Google Scholar
  23. Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51: 730–750.Google Scholar
  24. Nies DH (2000) Heavy metal resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia spec. CH34. Extremophiles 4: 77–82.Google Scholar
  25. Nies DH & Silver S (1989a) Metal ion uptake by a plasmid-free metal-sensitive Alcaligenes eutrophus strain. J Bacteriol 171: 4073–4075.Google Scholar
  26. Nies DH & Silver S (1989b) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171" 896–900.Google Scholar
  27. Nies DH, Nies A, Chu L & Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86: 7351–7355.Google Scholar
  28. Pan-Hou H, Kiyono M, Omura H, Omura T & Endo G (2002) Polyphosphate produced in recombinant Escherichia coli confers mercury resistance. FEMS Microbiol Lett 207: 159–164.Google Scholar
  29. Pardee AB, Jacob F & Monod J (1959) The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase of Escherichia coli. J Mol Biol 1: 165–168.Google Scholar
  30. Paulsen IT & Saier MH, Jr. (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156: 99–103.Google Scholar
  31. Paulsen IT, Brown MH & Skurray RD (1996) Proton-dependend multidrug efflux systems. Microbiol Rev 60: 575–608.Google Scholar
  32. Paulsen IT, Park JH, Choi PS & Saier MHJ (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156: 1–8.Google Scholar
  33. Rensing C, Pribyl T & Nies DH (1997) New functions for the three subunits of the CzcCBA cation-proton-antiporter. J Bacteriol 179: 6871–6879.Google Scholar
  34. Rensing C, Ghosh M & Rosen BP (1999) Families of soft-metalion-transporting ATPases. J Bacteriol 181: 5891–5897.Google Scholar
  35. Saier MHJ (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354–411.Google Scholar
  36. Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thebault P, Whalen M, Wincker P, Levy M, Weissenbach J & Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497–502.Google Scholar
  37. Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  38. Schmidt T & Schlegel HG (1994) Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176: 7045–7054.Google Scholar
  39. Springael D, Diels L, Hooyberghs L, Kreps S & Mergeay M (1993) Construction and characterization of heavy metal resistant haloaromatic-degrading Alcaligenes eutrophus strains. Appl Environ Microbiol 59: 334–339.Google Scholar
  40. Taghavi S, Mergeay M & van der Lelie D (1997) Genetic and physical map of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and it derivative pMOL50 obtained after temperature induced mutagenesis and mortality. Plasmid 37: 22–34.Google Scholar
  41. Taghavi S, van der Lelie D & Mergeay M (1994) Electroporation of Alcaligenes eutrophus with (mega)plasmids and genomic DNA fragments. Appl Environ Microbiol 60: 3585–3591.Google Scholar
  42. Ullmann A (1984) One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29: 27–31.Google Scholar
  43. van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal-polluted soils. In: Vangronsveld J & Cunningham SD (Eds). Metal-contaminated soils: in situ inactivation and phytorestoration. Landes Bioscience, Austin, TX.Google Scholar
  44. Weber WJJ (1972) Physicochemical processes for water quality control. John Wiley & Son, New York.Google Scholar
  45. Yanisch-Perron C, Vieira J & Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Antje Legatzki
    • 1
  • Sylvia Franke
    • 1
  • Susann Lucke
    • 1
  • Toni Hoffmann
    • 1
  • Andreas Anton
    • 1
  • Dieter Neumann
    • 2
  • Dietrich H. Nies
    • 1
  1. 1.Institut für MikrobiologieHalleGermany
  2. 2.Leibniz-Institut für PflanzenbiochemieHalle/SaaleGermany

Personalised recommendations