Conservation Genetics

, Volume 4, Issue 3, pp 265–274

Minisatellite DNA profiling detects lineages and parentage in the endangered kakapo (Strigops habroptilus) despite low microsatellite DNA variation

  • Hilary C. Miller
  • David M. Lambert
  • Craig D. Millar
  • Bruce C. Robertson
  • Edward O. Minot
Article

Abstract

An important goal of the conservationmanagement program of the critically endangeredground parrot, the New Zealand kakapo (Strigops habroptilus) is the determination ofparentage and levels of genetic diversitywithin the remaining population. Our previousmicrosatellite DNA studies have shown that allindividuals of this species except one arehomozygous at seven loci examined. Incontrast, we now show that a minisatellite DNAanalysis of kakapo provides sufficientvariation to conduct paternity analyses anddetect heterogeneity within the 86 livingkakapo. The sole remaining Fiordland kakapo,Richard Henry, is shown to be geneticallydivergent from individuals originating from theonly other remaining population on StewartIsland, suggesting that two lineages of kakapoare present in the extant population. This hasparticular significance for the conservationmanagement goal of maintenance of the maximumgenetic diversity in the species as a whole. The example of the kakapo illustrates thatminisatellite DNA markers can be useful incases where microsatellite DNA fails to showsufficient variation.

conservation genetics genetic variation kakapo minisatellite DNA fingerprinting parentage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardern SL, Lambert DM (1997) Is the black robin in genetic peril? Molecular Ecology, 6, 21-28.Google Scholar
  2. Ardern SL, Lambert DM, Rodrigo AG, M cLean IG (1997a) The effects of population bottlenecks on multilocus DNA variation in robins. J. Heredity, 88, 179-186.Google Scholar
  3. Ardern SL, Ma W, Ewen JG, Armstrong DP, Lambert DM (1997b) Social and sexual monogamy in translocated New Zealand robin populations detected using minisatellite DNA. The Auk, 114, 120-126.Google Scholar
  4. Ashley MV, Dow BD (1994) The use of microsatellite analysis in population biology: Background, methods and potential applications. In: Molecular Ecology and Evolution: Approaches and Applications. (eds. Schierwater BSB, Wagner GP, DeSalle R), pp. 185-201. Birkhauser Verlag.Google Scholar
  5. Birdlife International (2000) Threatened Birds of the World. Barcelona and Cambridge, Lynx Edicions and Birdlife International, UK.Google Scholar
  6. Brock MK, White BN (1992) Application of DNA fingerprinting to the recovery program of the endangered Puerto-Rican parrot. Proc. Natl. Acad. Sci. USA, 89, 11121-11125.Google Scholar
  7. Buard J, Bourdet A, Yardley J, Dubrova Y, Jeffreys AJ (1998) Influences of array size and homogeneity on minisatellite mutation. Embo Journal, 17, 3495-3502.Google Scholar
  8. Caparroz R, Miyaki CY, Bampi MI, Wajntal A (2001) Analysis of the genetic variability in a sample of the remaining group of Spix's Macaw (Cyanopsitta spixii, Psittaciformes: Aves) by DNA fingerprinting. Biological Conservation, 99, 307-311.Google Scholar
  9. Clout MN, Craig JL (1995) The conservation of critically endangered flightless birds in New Zealand. Ibis, 137, S181-S190.Google Scholar
  10. Clout MN, Merton DV (1998) Saving the kakapo: The conservation of the world's most peculiar parrot. Bird Conservation International, 8, 281-296.Google Scholar
  11. Danforth B, Freeman-Gallant CR (1996) DNA fingerprinting and the problem of non-independence among pairwise comparisons. Mol. Ecol., 5, 221-227.Google Scholar
  12. Dawson EW (1962) An early specimen of the kakapo (Strigops habroptilus) from Stewart Island. Notornis, 10, 85-86.Google Scholar
  13. Department of Conservation (1996) Kakapo Recovery Plan 1996–2005. Threatened Species Recovery Plan No. 21. Department of Conservation, Wellington.Google Scholar
  14. Ellegren H (2000) Microsatellite mutations in the germline: Implications for evolutionary inference. Trends in Genetics, 16, 551-558.Google Scholar
  15. Elliot GP, Merton DV, Jansen P (2001) Intensive management of a critically endangered species: The kakapo. Biological Conservation, 99, 121-133.Google Scholar
  16. Haig S (1998) Molecular contributions to conservation. Ecology, 79, 413-425.Google Scholar
  17. Ingvarsson PK (2001) Restoration of genetic variation lost–the genetic rescue hypothesis. Trends Ecol. Evol., 16, 62-63.Google Scholar
  18. Jansen P (2002) Kakapo to Get New Home. Kakapo Recovery Program Website: http://www.kakaporecovery.org.nz/news/release-7-07-02.html.Google Scholar
  19. Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314, 67-73.Google Scholar
  20. Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature, 332, 278-281.Google Scholar
  21. King TM, Williams M, Lambert DM (2000) Dams, ducks and DNA: Identifying the effects of a hydro-electric scheme on New Zealand's endangered blue duck. Conservation Genetics, 1, 103-113.Google Scholar
  22. Lambert DM, Millar CD, Jack K, Anderson S, Craig JL (1994) Single and multilocus DNA fingerprinting of communally breeding pukeko–do copulations or dominance ensure reproductive success? Proc. Natl. Acad. Sci. USA, 91, 9641-9645.Google Scholar
  23. Lambert DM, Millar CD (1995) DNA science and conservation. Pacific Conservation Biology, 2, 21-38.Google Scholar
  24. Lambert DM, Miller HC, Anderson I (2000) DNA Analysis of Shore Plovers. Science and Research Internal Report 178. Department of Conservation, Wellington.Google Scholar
  25. Lambert DM, Robins J (1995) Genetic Consequences of Philopatry: Minisatellite DNA Variation in Auckland Island Teals. Conservation Advisory Notes, Department of Conservation, Wellington.Google Scholar
  26. Lloyd BD, Powlesland RG (1994) The decline of kakapo (Strigops habroptilus) and attempts at conservation by translocation. Biological Conservation, 69, 75-85.Google Scholar
  27. Lynch M (1991) Analysis of population genetic structure by DNA fingerprinting. In: DNA Fingerprinting Approaches and Applications (eds. Burke T, Dolf G, Jeffreys AJ, Wolff R), pp. 113-126. Birkhauser Verlag, Basel.Google Scholar
  28. Merton DV, Morris RB, Atkinson IAE (1984) Lek behaviour in a parrot: The Kakapo Strigops habroptilus of New Zealand. Ibis, 126, 277-283.Google Scholar
  29. Merton DV (2000) Kakapo Update November 2000. Kakapo Recovery Program Website: http://www.kakaporecovery.org.nz/ news/update_nov_2000.html.Google Scholar
  30. Millar CD, Anthony I, Lambert DM, Bergmann CC, Bellamy AR, Young EC (1994) Patterns of reproductive success determined by DNA fingerprinting in a communally breeding oceanic bird. Biological Journal of the Linnean Society, 52, 31-48.Google Scholar
  31. Miyaki CY, Hanotte O, Wajntal A, Burke T (1995) DNA fingerprinting in the endangered parrot Aratinga guarouba and other Aratinga species. Revista Brasileira De Genetica, 18, 405-411.Google Scholar
  32. Papangelou A, Ham M, Miyamoto MM (1998) Variation of multilocus minisatellite DNA fingerprints in avian populations. Zoological Studies, 37, 161-168.Google Scholar
  33. Powlesland RG, Roberts A, Lloyd BD, Merton DV (1995) Number, fate, and distribution of kakapo (Strigops habroptilus) found on Stewart Island, New Zealand, 1979–1992. New Zealand Journal of Zoology, 22, 239-248.Google Scholar
  34. Robertson BC, Minot EO, Lambert DM (2000) Microsatellite primers for the kakapo (Strigops habroptilus) and their utility in other parrots. Conservation Genetics, 1, 93-95.Google Scholar
  35. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY.Google Scholar
  36. Shin H-S, Bangiello TA, Clark BT, Jackson FR, Young MW (1985) An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates. Nature, 317, 445-448.Google Scholar
  37. Spielman D, Frankham R (1992) Modeling problems in conservation genetics using captive Drosophila populations: Improvement of reproductive fitness due to immigration of one individual into small partially inbred populations. Zool. Biol., 11, 343-351.Google Scholar
  38. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol. Evol., 15, 199-203.Google Scholar
  39. Wetton J, Carter RE, Parkin DT, Walters D (1987) Demographic study of a wild House Sparrow population by DNA fingerprinting. Nature, 327, 147-149.Google Scholar
  40. Williams G (1956) The kakapo (Strigops habroptilus): A review and re-appraisal of a near extinct species. Notornis, 7, 29-56.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Hilary C. Miller
    • 1
  • David M. Lambert
    • 1
  • Craig D. Millar
    • 2
  • Bruce C. Robertson
    • 2
  • Edward O. Minot
    • 2
  1. 1.Allan Wilson Centre for Molecular Ecology and EvolutionInstitute of Molecular BioSciences, Massey UniversityPalmerston NorthNew Zealand
  2. 2.Institute of Natural ResourcesMassey University, Private Bag 11-222Palmerston NorthNew Zealand
  3. 3.School of Biological SciencesAuckland University, Private Bag 92019AucklandNew Zealand

Personalised recommendations