Advertisement

Plant Cell, Tissue and Organ Culture

, Volume 74, Issue 3, pp 201–228 | Cite as

Transition of somatic plant cells to an embryogenic state

  • Attila FehérEmail author
  • Taras P. Pasternak
  • Dénes Dudits
Article

Abstract

Under appropriate in vivo or in vitro conditions, certain somatic plant cells have the capability to initiate embryogenic development (somatic embryogenesis). Somatic embryogenesis provides an unique experimental model to understand the molecular and cellular bases of developmental plasticity in plants. In the last few years, the application of modern experimental techniques, as well as the characterization of Arabidopsis embryogenesis mutants, have resulted in the accumulation of novel data about the acquisition of embryogenic capabilities by somatic plant cells. In this review, we summarize relevant experimental observations that can contribute to the description and definition of a transitional state of somatic cells induced to form totipotent, embryogenic cells. During this somatic-to-embryogenic transition, cells have to dedifferentiate, activate their cell division cycle and reorganize their physiology, metabolism and gene expression patterns. The roles of stress, endogenous growth regulators and chromatin remodelling in the coordinated reorganization of the cellular state are especially emphasized.

arabinogalactan proteins Ca2+ cell division cell polarity chromatin differential screening pH protein turnover somatic embryogenesis stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anil VS & Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol. 123: 1301–1311Google Scholar
  2. Antoine AF, Faure JE, Cordeiro S, Dumas C, Rougier M & Feijo JA (2000) A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proc. Natl. Acad. Sci. USA 97: 10643–10648Google Scholar
  3. Baldan B, Guzzo F, Filippini F, Gasparian M, LoSchiavo F, Vitale A, deVries SC, Mariani P & Terzi M (1997) The secretory nature of the lesion of carrot cell variant ts 11, rescuable by endochitinase. Planta 203: 381–389Google Scholar
  4. Basu S, Sun H, Brian L, Quatrano RL & Muday GK (2002) Early embryo development in Fucus distichus is auxin sensitive. Plant Physiol. 130: 292–302Google Scholar
  5. Beeckman T, Burssens S & Inze D (2001) The peri-cell-cycle in Arabidopsis. J. Exp. Bot. Suppl. 52: 403–411Google Scholar
  6. Belanger KD & Quatrano RS (2000) Polarity: the role of localized secretion. Curr. Opin. Plant Biol. 3: 67–72Google Scholar
  7. Bibikova TN, Jacob T, Dahse I & Gilroy S (1998) Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana. Development 125: 2925–2934Google Scholar
  8. Blervacq AS, Dubois T, Dubois J & Vasseur J (1995) First divisions of somatic embryogenic cells in Cichorium hybrid '474'. Protoplasma 186: 163–168Google Scholar
  9. Boutilier K, Offringa R, Fukuoka H, Sharma V, Kieft H, van Lammeren AAM, Ouellett T & van Lookeren C (2000) Ectopic expression of the Brassica napus baby boom gene triggers a homeotic conversion of vegetative tissues into embryos and cotyledons (Abstract). Plant Mol. Biol. Rep. 18: s11–s14Google Scholar
  10. Bögre L, Stefanov I, Ábrahám M, Somogyi I & Dudits D (1990) Differences in the responses to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment between embryogenic and non-embryogenic lines of alfalfa. In: Nijkamp HJJ, van der Plas LHW & Van Aartrijk J (eds) Progress in Plant Cellular and Molecular Biology (pp. 427–436). Kluwer Academic Publishers, DordrechtGoogle Scholar
  11. Busch M, Mayer U & Jurgens G (1996) Molecular analysis of the Arabidopsis pattern formation gene GNOM: gene structure and intragenic complementation. Mol. Gen. Genet. 250: 681–691Google Scholar
  12. Capitanio G, Baldan B, Filippini F, Terzi M, LoSchiavo F & Mariani P (1997) Morphogenetic effects of Brefeldin A on embryogenic cell cultures of Daucus carota L. Planta 203: 121–128Google Scholar
  13. Chapman A, Blervacq AS, Vasseur J & Hilbert JL (2000) Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of beta-glucosyl Yariv reagent and epitope localization during embryo development. Planta 211: 305–314Google Scholar
  14. Charrière F, Sotta B, Miginiac É & Hahne G (1999) Induction of adventitious or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: Variation of endogenous hormone levels. Plant Physiol. Biochem. 37: 751–757Google Scholar
  15. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES & Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94: 4223–4228Google Scholar
  16. Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES & Peacock WJ (2001) Control of early seed development. Annu. Rev. Cell Dev. Biol. 17: 677–699Google Scholar
  17. Choi YE, Kim HS, Soh WY & Yang DC (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2,3,5-triiodobenzoic acid. Plant Cell Rep. 16: 738–744Google Scholar
  18. Choi YE, Yang DC, Park JC, Soh WY & Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep. 17: 544–551Google Scholar
  19. Coca MA, Almoguera C & Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol. Biol. 25: 479–492Google Scholar
  20. Cove DJ (2000) The generation and modification of cell polarity. J. Exp. Bot. 51: 831–838Google Scholar
  21. Criqui MC, Plesse B, Durr A, Marbach J, Parmentier Y, Jamet E & Fleck J (1992) Characterization of genes expressed in mesophyll protoplasts of Nicotiana sylvestris before the re-initiation of the DNA replicational activity. Mech. Dev. 38: 121–132Google Scholar
  22. Criqui MC, Parmentier Y, Derevier A, Shen WH, Dong AW & Genschik P (2000) Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J. 24: 763–773Google Scholar
  23. Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D & Deák M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J. Exp. Bot. 52: 215–221Google Scholar
  24. de Jong AJ, Cordewener J, Lo SF, Terzi M, Vandekerckhove J, van Kammen A & de Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425–433Google Scholar
  25. den Boer BG & Murray JA (2000) Triggering the cell cycle in plants. Trends Cell Biol. 10: 245–250Google Scholar
  26. Denchev PD, Velcheva MR & Atanassov AI (1991) A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep. 10: 338–341Google Scholar
  27. Deshpande S & Hall JC (2000) Auxinic herbicide resistance may be modulated at the auxin-binding site in wild mustard (Sinapis arvensis L.): A light scattering study. Pestic. Biochem. Physiol. 66: 41–48Google Scholar
  28. Dijak M & Simmonds DH (1988) Microtubule organization during early direct embryogenesis from mesophyll protoplasts of Medicago sativa L. Plant Sci. 58: 183–191Google Scholar
  29. Dodeman VL, Ducreux G & Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J. Exp. Bot. 48: 1493–1509Google Scholar
  30. Dong JZ & Dunstan DI (1996) Expression of abundant mRNAs during somatic embryogenesis of white spruce [Picea glauca (Moench) Voss]. Planta 199: 459–466Google Scholar
  31. Dong JZ & Dunstan DI (1999) Cloning and characterization of six embryogenesis associated cDNAs from somatic embryos of Picea glauca and their comparative expression during zygotic embryogenesis. Plant Mol. Biol. 39: 859–864Google Scholar
  32. Dubois T, Guedira M, Dubois J & Vasseur J (1990) Direct somatic embryogenesis in roots of Cichorium. Is callose an early marker? Ann. Bot. 65: 539–545Google Scholar
  33. Dubois T, Guedira M, Dubois J & Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. A histological and S.E.M. study of early stages. Protoplasma 162: 120–127Google Scholar
  34. Dudits D, Bogre L & Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J. Cell Sci. 99: 475–484Google Scholar
  35. Dudits D, Györgyey J, Bögre L & Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 267–308). Kluwer Academic Publisher, DordrechtGoogle Scholar
  36. Dudits D, Magyar Z, Deak M, Mészáros T, Miskolczi P, Fehér A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bako L, ¨ Koncz C & Györgyey J (1998) Cyclin and calcium dependent kinase families: response of cell division cycle to hormone and stress signals. In: Francis D, Dudits D & Inze D (eds) Plant Cell Division (pp. 21–47). Portland Press, London, UKGoogle Scholar
  37. Eastmond PJ & Rawsthorne S (1998) Comparison of the metabolic properties of plastids isolated from developing leaves or embryos of Brassica napus L. J. Exp. Bot. 49: 1105–1111Google Scholar
  38. Egertsdotter U & von Arnold S (1998) Development of somatic embryos in Norway spruce. J. Exp. Bot. 49: 155–162Google Scholar
  39. Fargasova A (1994) Comparative study of plant growth hormone (herbicide) toxicity in various biological subjects. Ecotoxicol. Environ. Saf. 29: 359–364Google Scholar
  40. Faure JE & Dumas C (2001) Fertilization in flowering plants. New approaches for an old story. Plant Physiol. 125: 102–104Google Scholar
  41. Fehér A, Pasternak T, Miskolczi P, Ayaydin F & Dudits D (2001) Induction of the embryogenic pathway in somatic plant cells. Acta Hort. 560: 293–298Google Scholar
  42. Fehér A, Pasternak T, Ötvös K, Miskolczi P & Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57: 5–12Google Scholar
  43. Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB & Fang SC (2000) The embryo MADS domain factor AGL15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183–197Google Scholar
  44. Filonova LH, Bozhkov PV & von Arnold S (2000) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot. 51: 249–264Google Scholar
  45. Fleck J & Durr A (1980) Comparison of proteins synthetized in vivo and in vitro by mRNA of isolated protoplasts. Planta 148: 453–454Google Scholar
  46. Fletcher JC & Meyerowitz EM (2000) Cell signaling within the shoot meristem. Curr. Opin. Plant Biol. 3: 23–30Google Scholar
  47. Fowler JE & Quatrano RS (1997) Plant cell morphogenesis: Plasma membrane interactions with the cytoskeleton and cell wall. Annu. Rev. Cell Dev. Biol. 13: 697–743Google Scholar
  48. Fowler MR, Ong LM, Russinova E, Atanassov AI, Scott NW, Slater A & Elliott MC (1998) Early changes in gene expression during direct somatic embryogenesis in alfalfa revealed by RAP-PCR. J. Exp. Bot. 49: 249–253Google Scholar
  49. Frelin C, Vigne P, Ladoux A & Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur. J. Biochem. 174: 3–14Google Scholar
  50. Gao CY & Zelenka PS (1997) Cyclins, cyclin-dependent kinases and differentiation. Bioessays 19: 307–315Google Scholar
  51. Geldner N, Friml J, Stierhof YD, Jurgens G & Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428Google Scholar
  52. Genschik P, Criqui MC, Parmentier Y, Derevier A & Fleck J (1998) Cell cycle-dependent proteolysis in plants: Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2075Google Scholar
  53. Gianazza E, De Ponti P, Scienza A, Villa P & Martinelli L (1992) Monitoring by two-dimensional electrophoresis somatic embryogenesis in leaf and petiole explants from Vitis. Electrophoresis 13: 203–209Google Scholar
  54. Giroux RW & Pauls KP (1997) Characterization of somatic embryogenesis-related cDNAs from alfalfa (Medicago sativa L.). Plant Mol. Biol. 33: 393–404Google Scholar
  55. Goldsworthy A & Mina MG (1991) Electrical patterns of tobacco cells in media containing indole-3-acetic acid or 2,4-dichloro-phenoxyacetic acid. Planta 183: 386–373Google Scholar
  56. Gray WM & Estelle M (2000) Function of the ubiquitin–protea-some pathway in auxin response. Trends Biochem. Sci. 25: 133–138Google Scholar
  57. Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H & Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678–1691Google Scholar
  58. Gray WM, Kepinski S, Rouse D, Leyser O & Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276Google Scholar
  59. Gross JD, Bradbury J, Kay RR & Peacey MJ (1983) Intracellular pH and the control of cell differentiation in Dictyostelium discoideum. Nature 303: 244–245Google Scholar
  60. Grosset J, Marty I, Chartier Y & Meyer Y (1990) mRNAs newly synthetized by tobacco mesophyll protoplasts are wound inducible. Plant Mol. Biol. 15: 485–496Google Scholar
  61. Grossmann K (2000) Mode of action of auxinic herbicides: a new ending to a long, drawn out story. Trends Plant Sci. 5: 506–508Google Scholar
  62. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA & Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280: 446–450Google Scholar
  63. Grossniklaus U, Spillane C, Page DR & Kohler C (2001) Genomic imprinting and seed development: endosperm formation with and without sex. Curr. Opin. Plant Biol. 4: 21–27Google Scholar
  64. Gutierrez C (1998) The retinoblastoma pathway in plant cell cycle and development. Curr. Opin. Plant Biol. 1: 492–497Google Scholar
  65. Györgyey J, Nemeth K, Magyar Z, Kelemen Z, Alliotte T, Inze D & Dudits D (1997) Expression of a novel-type small proline rich protein gene of alfalfa is induced by 2,4-dichlorophenoxiacetic acid in dedifferentiated callus cells. Plant Mol. Biol. 34: 593–602Google Scholar
  66. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U & de Vries SC (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127: 803–816Google Scholar
  67. Helleboid S, Chapman A, Hendriks T, Inze D, Vasseur J & Hilbert JL (2000a) Cloning of beta-1,3-glucanases expressed during Cichorium somatic embryogenesis. Plant Mol. Biol. 42: 377–386Google Scholar
  68. Helleboid S, Hendriks T, Bauw G, Inze D, Vasseur J & Hilbert JL (2000b) Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Exp. Bot. 51: 1189–1200Google Scholar
  69. Hemerly AS, Ferreira P, de Almeida EJ, Van Montagu M, Engler G & Inze D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723Google Scholar
  70. Hemerly AS, Ferreira PCG, Van Montagu M & Inze D (1999) Cell cycle control and plant morphogenesis: is there an essential link? Bioessays 21: 29–37Google Scholar
  71. Hemerly AS, Ferreira PC, Van Montagu M, Engler G & Inze D (2000) Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of arabidopsis. Plant J. 23: 123–130Google Scholar
  72. Hendriks T, Scheer I, Quillet MC, Randoux B, Delbreil B, Vasseur J & Hilbert JL (1998) A non-symbiotic hemoglobin gene is expressed during somatic embryogenesis in Cichorium. Biochim. Biophys. Acta 1443: 193–197Google Scholar
  73. Hirt H (2000) Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 97: 2405–2407Google Scholar
  74. Hirt H, Pay A, Györgyey J, Bako L, Nemeth K, Bogre L, Schweyen RJ, Heberle-Bors E & Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc. Natl. Acad. Sci. USA 88: 1636–1640Google Scholar
  75. Holk A, Kaldenhoff R & Richter G (1996) Regulation of an embryogenic carrot gene (DC 2.15) and identification of its active promoter sites. Plant Mol. Biol. 31: 1153–1161Google Scholar
  76. Huang L, Franklin AE & Hoffman NE (1993) Primary structure and characterization of an Arabidopsis thaliana calnexin like protein. J. Biol. Chem. 268: 6560–6566Google Scholar
  77. Hulskamp M & Schnittger A (1998) Spatial regulation of trichome formation in Arabidopsis thaliana. Semin. Cell. Dev. Biol. 9: 213–220Google Scholar
  78. Huntley R, Healy S, Freeman D, Lavender P, de Jager S, Green wood J, Makker J, Walker E, Jackman M, Xie Q, Bannister AJ, Kouzarides T, Gutierrez C, Doonan JH & Murray JA (1998) The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with G1/S regulators and plant cyclin D (CycD) proteins. Plant Mol. Biol. 37: 155–169Google Scholar
  79. Ingram R, Charrier B, Scollan C & Meyer P (1999) Transgenic tobacco plants expressing the Drosophila Polycomb (Pc) chromodomain show developmental alterations: possible role of Pc chromodomain proteins in chromatin-mediated gene regulation in plants. Plant Cell 11: 1047–1060Google Scholar
  80. Ingvardsen C & Veierskov B (2001) Ubiquitin and proteasome dependent proteolysis in plants. Physiol. Plant. 112: 451–459Google Scholar
  81. Ivanova A, Velcheva M, Denchev P, Atanassov A & Van Onckelen H (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol. Plant. 92: 85–89Google Scholar
  82. Jack T (2001a) Plant development going MADS. Plant Mol. Biol. 46: 515–520Google Scholar
  83. Jack T (2001b) Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6: 310–316Google Scholar
  84. Jackson CL & Casanova JE (2000) Turning on ARF: the Sec7family of guanine–nucleotide-exchange factors. Trends Cell Biol. 10: 60–67Google Scholar
  85. Jamet E, Durr A, Parmentier Y, Criqui MC & Fleck J (1990) Is ubiquitin involved in the dedifferentiation of higher plant cells? Cell. Differ. Dev. 29: 37–46Google Scholar
  86. Jansen MAK, Booij H, Schel JHN & de Vries SC (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultuRes. Plant Cell Rep. 9: 221–223Google Scholar
  87. Jimenez VM & Bangerth F (2001a) Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tiss. Org. Cult. 67: 37–46Google Scholar
  88. Jimenez VM & Bangerth F (2001b) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol. Plant. 111: 389–395Google Scholar
  89. Jimenez VM & Bangerth F (2001c) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci. 160: 247–257Google Scholar
  90. John PC (1996) The plant cell cycle: conserved and unique features in mitotic control. Prog. Cell Cycle Res. 2: 59–72Google Scholar
  91. Jurgens G (1992) Pattern formation in the flowering plant embryo. Curr. Opin. Genet. Dev. 2: 567–570Google Scholar
  92. Jurgens G (2001) Apical–basal pattern formation in Arabidopsis embryogenesis. EMBO J. 20: 3609–3616Google Scholar
  93. Jurgens G, Mayer U, Torres R, Berleth T & Misera S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development Suppl. 1: 27–38Google Scholar
  94. Jurgens G, Grebe M & Steinmann T (1997) Establishment of cell polarity during early plant development. Curr. Opin. Cell Biol. 9: 849–852Google Scholar
  95. Kairong C, Gengsheng X, Lin Q, Xinmin L & Yafu W(1999) The analysis of differential gene expression in early somatic embryogenesis on Lycium barbarum. Plant Cell Tiss. Org. Cult. 59: 169–174Google Scholar
  96. Kamada H, Kobayashi K, Kiyosue T & Harada H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev. Biol. 25: 1163–116Google Scholar
  97. Kamada H, Ishikawa K, Saga H & Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tiss. Cult. Lett. 10: 38–44Google Scholar
  98. Kitamiya E, Suzuki S, Sano T & Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep. 19: 551–557Google Scholar
  99. Kiyosue T, Takano K, Kamada H & Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can. J. Bot. 68: 2301Google Scholar
  100. Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int. Rev. Cytol. 171: 79–120Google Scholar
  101. Koltunow A (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5: 1425–1437Google Scholar
  102. Koltunow AM, Bicknell RA & Chaudhury AM (1995) Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108: 1345–1352Google Scholar
  103. Kranz E (1999) In vitro fertilization with isolated single gametes. Methods Mol. Biol. 111: 259–267Google Scholar
  104. Kreuger M & van Holst GJ (1993) Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 189: 243–248Google Scholar
  105. Kropf DL, Bisgrove SR & Hable WE (1999) Establishing a growth axis in fucoid algae. Trends Plant Sci. 4: 490–494Google Scholar
  106. Kurkdjian A & Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 277–303Google Scholar
  107. Lakshmanan P & Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol. 2: 136–148Google Scholar
  108. Larkin JC, Marks MD, Nadeau J & Sack F (1997) Epidermal cell fate and patterning in leaves. Plant Cell 9: 1109–1120Google Scholar
  109. Leyser O (2001) Auxin signalling: the beginning, the middle and the end. Curr. Opin. Plant Biol. 4: 382–386Google Scholar
  110. Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann. NY Acad. Sci. 851: 187–198Google Scholar
  111. Lin X, Hwang GJ & Zimmerman JL (1996) Isolation and characterization of a diverse set of genes from carrot somatic embryos. Plant Physiol. 112: 1365–1374Google Scholar
  112. Lloyd AM, Schena M, Walbot V & Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid inducible regulator. Science 266: 436–439Google Scholar
  113. Lloyd CW, Lowe SB & Peace GW (1980) The mode of action of 2,4-D in counter acting the elongation of carrot cells grown in culture. J. Cell Sci. 195: 309–312Google Scholar
  114. Lo Schiavo F, Giuliano G, deVries SC, Genga A, Bollini R, Pitto L, Cozzani F, Nuti-Ronchi V & Terzi M (1990) A carrot cell variant temperature sensitive for somatic embryogenesis reveals a defect in the glycosylation of extracellular proteins. Mol. Gen. Genet. 223: 385–393Google Scholar
  115. Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB & Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195–1205Google Scholar
  116. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ & Chaudhury AM (1999) Genes controlling fertilization independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96: 296–301Google Scholar
  117. Luo Y & Koop HU (1997) Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta 202: 387–396Google Scholar
  118. Marrs KA (1996) The functions and regulation of glutathione S transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158Google Scholar
  119. Marty F (1999) Plant vacuoles. Plant Cell 11: 587–600Google Scholar
  120. Marty I, Brugidou C, Chartier Y & Meyer Y(1993) Growth related gene expression in Nicotiana tabacum mesophyll protoplasts. Plant J. 4: 265–278Google Scholar
  121. Matsue T, Koike S & Uchida I (1993) Microamperometric estimation of photosynthesis inhibition in a single algal protoplast. Biochem. Biophys. Res. Commun. 197: 1283–1287Google Scholar
  122. Mayer U & Jurgens G (1998) Pattern formation in plant embryogenesis: a reassessment. Semin. Cell. Dev. Biol. 9: 187–193Google Scholar
  123. McCabe PF, Valentine TA, Forsberg LS & Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9: 2225–2241Google Scholar
  124. Meijer M & Murray JA (2001) Cell cycle controls and the development of plant form. Curr. Opin. Plant Biol. 4: 44–49Google Scholar
  125. Meinke DW (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258: 1647–1650Google Scholar
  126. Meinke DW, Franzmann LH, Nickle TC & Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6: 1049–1064Google Scholar
  127. Mészáros T, Miskolczi P, Ayaydin F, Pettkó-Szandtner A, Magyar Z, Horváth VG, Bakó L, Fehér A & Dudits D (2000) Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells. Plant Mol. Biol. 43: 595–605Google Scholar
  128. Michalczuk L & Druart P (1999) Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil (R) cherry rootstock (Prunus incisa×serrula 'GM 9') and in hormone-dependent, non-embryogenic calli of Prunus incisaserrula and Prunus domestica. Physiol. Plant. 107: 426–432Google Scholar
  129. Michalczuk L, Cooke TJ & Cohen JD (1992a) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31: 1097–1103Google Scholar
  130. Michalczuk L, Ribnicky DM, Cooke TJ & Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol. 100: 1346–1353Google Scholar
  131. Mironov V, De Veylder L, Van Montagu M & Inze D (1999) Cyclin-dependent kinases and cell division in plants – The nexus. Plant Cell 11: 509–521Google Scholar
  132. Mordhorst AP, Toonen MAJ & de Vries SC (1997) Plant embryogenesis. Crit. Rev. Plant Sci. 16: 535–576Google Scholar
  133. Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M & de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149: 549–563Google Scholar
  134. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12: 3788–3796Google Scholar
  135. Mu JH, Lee HS & Kao TH (1994) Characterization of a pollen-expressed receptor like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6: 709–721Google Scholar
  136. Nagata T, Ishida S, Hasezawa S & Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int. J. Dev. Biol. 38: 321–327Google Scholar
  137. Nishiwaki M, Fujino K, Koda Y, Masuda K & Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211: 756–759Google Scholar
  138. Nomura K & Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot cell suspension culture. Plant Physiol. 79: 988–991Google Scholar
  139. Nomura K & Komamine A (1995) Physiological and biological aspects of somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 249–266). Kluwer Academic Publishers, DordrechtGoogle Scholar
  140. Ober SS & Pardee AB (1987) Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts. Proc. Natl. Acad. Sci. USA 84: 2766–2770Google Scholar
  141. Ogas J, Cheng JC, Sung ZR & Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277: 91–94Google Scholar
  142. Ogas J, Kaufmann S, Henderson J & Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl. Acad. Sci.USA 96: 13839–13844Google Scholar
  143. Oh SH, Steiner HY, Dougall DK & Roberts DM (1992) Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Arch. Biochem. Biophys. 297: 28–34Google Scholar
  144. Ohad N, Margossian L, Hsu Y, Williams C, Repetti P & Fischer RL (1996) A mutation that allows endosperm development without fertilization. Proc. Natl. Acad. Sci. USA 93: 5319–5324Google Scholar
  145. Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB & Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11: 407–416Google Scholar
  146. Osuga K, Masuda H & Komamine A (1999) Synchronization of somatic embryogenesis at high frequency using carrot suspension cultures: model systems and application in plant develop ment. Methods Cell Sci. 21: 129–140Google Scholar
  147. Overvoorde PJ & Grimes HD (1994) The role of calcium and calmodulin in carrot somatic embryogenesis. Plant Cell Physiol. 35: 135–144Google Scholar
  148. Palme K & Gälweiler L (1999) PIN-pointing the molecular basis of auxin transport. Curr. Opin. Plant Biol. 2: 375–381Google Scholar
  149. Pasternak T, Miskolczi P, Ayaydin F, Mészáros T, Dudits D & Fehér A (2000) Exogenous auxin and cytokinin dependent activation of CDKs and cell division in leaf protoplast-derived cells of alfalfa. Plant Growth Regul. 32: 129–141Google Scholar
  150. Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard ´ H, Van Onckelen H, Dudits D & Fehér A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129: 1807–1819Google Scholar
  151. Pedroso MC & Pais MS (1995) Factors controlling somatic embryogenesis – Cell wall changes as an in vivo marker of embryogenic competence. Plant Cell Tiss. Org. Cult. 43: 147–154Google Scholar
  152. Pennell RI, Janniche L, Scofield GN, Booij H, de Vries SC & Roberts K (1992) Identification of a transitional cell state in the developmental pathway to carrot somatic embryogenesis. J. Cell Biol. 119: 1371–1380Google Scholar
  153. Pennell RI, Cronk QC, Forsberg LS, Stohr C, Snogerup L, Kjel-lbom P & McCabe PF (1995) Cell-context signalling. Phil. Trans. R. Soc. Lond. Biol. Sci. 350: 87–93Google Scholar
  154. Perera IY & Zielinski RE (1992) Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol. Biol. 19: 649–664Google Scholar
  155. Perry SE, Lehti MD & Fernandez DE (1999) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol. 120: 121–129Google Scholar
  156. Pichon O & Desbiez MO (1994) Is cytoplasmic pH involved in the regulation of cell cycle in plants? Physiol. Plant. 92: 261–265Google Scholar
  157. Poulsen GB, Frugis G, Albrechtsen M & Mariotti D (1996) Synthesis of extracellular proteins in embryogenic and non-embryogenic cell cultures of alfalfa. Plant Cell Tiss. Org. Cult. 44: 257–260Google Scholar
  158. Pu R & Robinson KR (1998) Cytoplasmic calcium gradients and calmodulin in the early development of the fucoid alga Pelvetia compressa. J. Cell Sci. 111: 3197–3207Google Scholar
  159. Rajasekaran K, Hein MB, Davis GC, Carnes MG & Vasil IK (1987) Exogenous growth regulators in leaves and tissue cultures of Pennisetum purpureum Schum. J. Plant Physiol. 130: 13–25Google Scholar
  160. Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H(+)-translocating ATPase. Biochim. Biophys. Acta 1465: 17–36Google Scholar
  161. Reynolds TL (1997) Pollen embryogenesis. Plant Mol. Biol. 33: 1–10Google Scholar
  162. Ribnicky DM, Cohen JD, Hu WS & Cooke TJ (2001) An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta DOI 10.1007/s004250100639Google Scholar
  163. Riou-Khamlichi C, Huntley R, Jacqmard A & Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541–1544Google Scholar
  164. Robinson KR & Miller BJ (1997) The coupling of cyclic GMP and photopolarization of Pelvetia zygotes. Dev. Biol. 187: 125–130Google Scholar
  165. Robinson KR, Lorenzi R, Ceccarelli N & Gualtieri P (1998) Retinal identification in Pelvetia fastigiata. Biochem. Biophys. Res. Commun. 243: 776–778Google Scholar
  166. Robinson KR, Wozniak M, Pu R & Messerli M (1999) Symmetry breaking in the zygotes of the fucoid algae: controversies and recent progress. Curr. Top. Dev. Biol. 44: 101–125Google Scholar
  167. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D & Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771Google Scholar
  168. Rogg LE & Bartel B (2001) Auxin Signaling. Derepression through regulated proteolysis. Dev. Cell. 1: 595–604Google Scholar
  169. Roitsch T (1999) Source-sink regulation by sugar and stress. Curr. Opin. Plant Biol. 2: 198–206Google Scholar
  170. Russell SD (1993) The egg cell: Development and role in fertilization and early embryogenesis. Plant Cell 5: 1349–1359Google Scholar
  171. Russinova E, Shao C-Y, Fowler M, Iantcheva A, Atanassov AI, Scott NW, Elliott MC & Slater A (1998) The regulation of gene expression and cell division during direct somatic embryogenesis in alfalfa. (Abstract) 5th Plant EmbryogenesisWorkshop. 19–21 November 1998. Barcelona, SpainGoogle Scholar
  172. Sabala I, Elfstrand M, Farbos I, Clapham D & von Arnold S (2000) Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Mol. Biol. 42: 461–478Google Scholar
  173. Sagare AP, Lee YL, Lin TC, Chen CC & Tsay HS (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae) – a medicinal plant. Plant Sci. 160: 139–147Google Scholar
  174. Sallandrouze A, Faurobert M, El Maataoui M & Espagnac H (1999) Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 20: 1109–1119Google Scholar
  175. Samaj J, Baluska F, Bobak M & Volkmann D (1999) Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep. 18: 369–374Google Scholar
  176. Sanders D, Brownlee C & Harper JF (1999) Communicating with calcium. Plant Cell 11: 691–706Google Scholar
  177. Sato S, Toya T, Kawahara R, Whittier RF, Fukuda H & Komamine A (1995) Isolation of a carrot gene expressed specifically during early-stage somatic embryogenesis. Plant Mol. Biol. 28: 39–46Google Scholar
  178. Schaefer J (1985) Regeneration in alfalfa tissue culture. Plant Physiol. 79: 584Google Scholar
  179. Schauf CL, Bringle B & Stillwell W (1987) Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Biochem. Biophys. Res. Commun. 143: 1085–1091Google Scholar
  180. Scheres B & Benfey PN (1999) Asymmetric cell division in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 505–537Google Scholar
  181. Schmidt ED, Guzzo F, Toonen MA & de Vries SC (1997) A leucine-rich repeat containing receptor like kinase marks somatic plant cells competent to form embryos. Development 124: 2049–2062Google Scholar
  182. Schnittger A, Schellmann S & Hulskamp M (1999) Plant cells – young at heart? Curr. Opin. Plant Biol. 2: 508–512Google Scholar
  183. Schoffl F, Prandl R & Reindl A (1998) Regulation of the heat shock response. Plant Physiol. 117: 1135–1141Google Scholar
  184. Schomer M & Epel D (1999) The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev. Biol. 216: 394–405Google Scholar
  185. Senger S, Mock HP, Conrad U & Manteuffel R (2001) Immuno modulation of ABA function affects early events in somatic embryo development. Plant Cell Rep. 20: 112–120Google Scholar
  186. Servos J, Haase E & Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol. Gen. Genet. 236: 214–218Google Scholar
  187. Sharma KK & Thorpe TA (1995) Asexual embryogenesis in vascular plants in nature. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 17–72). Kluwer Academic Publishers, DordrechtGoogle Scholar
  188. Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell. Mol. Life Sci. 58: 1399–1417Google Scholar
  189. Smith DL & Krikorian AD (1990a) pH control of carrot somatic embryogenesis. In: Nijkamp HJJ, Van der Plas LHW & Van Aartrijk J (eds) Progress in Plant Cellular and Molecular Biology (pp. 449–453). Kluwer Academic Publishers, DordrechtGoogle Scholar
  190. Smith DL & Krikorian AD (1990b) Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal. Plant Cell Rep. 9:34Google Scholar
  191. Somleva MN, Schmidt EDL & de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep. 19: 718–726Google Scholar
  192. Song J, Sorensen EL & Liang GH (1990) Direct embryogenesis from single mesophyll protoplasts in alfalfa (Medicago sativa L.). Plant Cell Rep. 9: 21–25Google Scholar
  193. Souter M & Lindsey K (2000) Polarity and signalling in plant embryogenesis. J. Exp. Bot. 51: 971–983Google Scholar
  194. Stals H & Inze D (2001) When plant cells decide to divide. Trends Plant Sci. 6: 359–364Google Scholar
  195. Steenhoudt O & Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24: 487–506Google Scholar
  196. Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweiler L, Palme K & Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286: 316–318Google Scholar
  197. Sterk P, Booij H, Schellekens GA, van Kammen A & de Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907–921Google Scholar
  198. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB & Harada JJ (2001) LEAFY COTYLEDON2encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 98: 11806–11811Google Scholar
  199. Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211: 157–176Google Scholar
  200. Studzinski GP & Harrison LE (1999) Differentiation-related changes in the cell cycle traverse. Int. Rev. Cytol. 189: 1–58Google Scholar
  201. Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5: 537–542Google Scholar
  202. Swann K & Whitaker MJ (1990) Second messengers at fertilization in sea-urchin eggs. J. Reprod. Fertil. Suppl. 42: 141–153Google Scholar
  203. Sylvester AW(2000) Division decisions and the spatial regulation of cytokinesis. Curr. Opin. Plant Biol. 3: 58–66Google Scholar
  204. Takahashi Y, Ishida S & Nagata T (1994) Function and modulation of expression of auxin-regulated genes. Int. Rev. Cytol. 152: 109–144Google Scholar
  205. Taylor RL (1967) The foliar embryos of Malaxis paludosa. Can. J. Bot. 45: 1553–1556Google Scholar
  206. Thoma S, Hecht U, Kippers A, Botella J, deVries S & Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 105: 35–45Google Scholar
  207. Thomas C, Bronner R, Molinier J, Prinsen E, Van Onckelen H & Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215: 577–583Google Scholar
  208. Thompson HJM & Knox JP (1998) Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding beta-glucosyl Yariv reagent. Planta 205: 32–38Google Scholar
  209. Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, van Kammen A & deVries SC (1994) Description of somatic-embryo forming single cells in carrot suspension cultures employing video cell tracking. Planta 194: 565–572Google Scholar
  210. Toonen MAJ, Schmidt EDL, Hendriks T, Verhoeven HA, van Kammen A & deVries SC (1996) Expression of the JIM8 cell wall epitope in carrot somatic embryogenesis. Planta 200: 167–173Google Scholar
  211. Toonen MA, Verhees JA, Schmidt ED, van Kammen A & de Vries SC (1997a) AtLTP1 luciferase expression during carrot somatic embryogenesis. Plant J. 12: 1213–1221Google Scholar
  212. Toonen MAJ, Schmidt EDL, van Kammen A & deVries SC (1997b) Promotive and inhibitory effects of diverse arabinogalactan proteins on Daucus carota L. somatic embryogenesis. Planta 203: 188–195Google Scholar
  213. Torres-Ruiz RA & Jurgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120: 2967–2978Google Scholar
  214. Touraev A, Pfosser M, Vicente O & HeberleBors E (1996) Stress as the major signal controlling the developmental fate of tobacco microspores: Towards a unified model of induction of microspore/ pollen embryogenesis. Planta 200: 144–152Google Scholar
  215. Udvardy A (1996) The role of controlled proteolysis in cell–cycle regulation. Eur. J. Biochem. 240: 307–313Google Scholar
  216. Vallee N (1997) Role Des Protons, Du Calcium Et Des Canaux Ioniques Dans La Division Des Protoplastes De Tournesol (Helianthus annuus L.)., PhD Thesis, L'Institute National Polytechnique de Toulouse, Toulouse, FranceGoogle Scholar
  217. van den Berg C, Willemsen V, Hendriks G, Weisbeek P & Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289Google Scholar
  218. van den Berg C, Weisbeek P & Scheres B (1998) Cell fate and cell differentiation status in the Arabidopsis root. Planta 205: 483–491Google Scholar
  219. van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A & de Vries SC (2001) N-Acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 125: 1880–1890Google Scholar
  220. Varga-Weisz PD & Becker PB (1998) Chromatin-remodeling factors: machines that regulate? Curr. Opin. Cell Biol. 10: 346–353Google Scholar
  221. Vernet T, Fleck J, Durr A, Fritsch C, Pinck M & Hirth L (1982) Expression of the gene coding for the small subunit for ribulose biphosphate carboxylase during differentiation of tobacco plant protoplasts. Eur. J. Biochem. 126: 489–494Google Scholar
  222. Vroemen CW, Langeveld S, Mayer U, Ripper G, Jurgens G, Van Kammen A & de Vries SC (1996) Pattern formation in the arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8: 783–791Google Scholar
  223. Vroemen C, de Vries S & Quatrano R (1999) Signalling in plant embryos during the establishment of the polar axis. Semin. Cell Dev. Biol. 10: 157–164Google Scholar
  224. Walbot V (1996) Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci. 1: 27–32Google Scholar
  225. Walker L & Estelle M (1998) Molecular mechanisms of auxin action. Curr. Opin. Plant Biol. 1: 434–439Google Scholar
  226. Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL & Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15: 501–510Google Scholar
  227. Warren GS (1980) A decrease in intercellular space accompanies auxin-induced abortion in somatic carrot embryos. Biochem. Soc. Trans. 8: 627–628Google Scholar
  228. Wei YD, Zheng HG & Hall JC (2000) Role of auxinic herbicide-induced ethylene on hypocotyl elongation and root / hypocotyl radial expansion. Pest. Manage. Sci. 56: 377–387Google Scholar
  229. Whitaker MJ (1990) Cell cycle control proteins are second messenger targets at fertilization in sea urchin eggs. J. Reprod. Fertil. Suppl. 42: 199–204Google Scholar
  230. Wink M (1993) The plant vacuole: a multifunctional compartment. J. Exp. Bot. 44: 231–246Google Scholar
  231. Xu N & Bewley JD (1992) Contrasting pattern of somatic and zygotic embryo development in alfalfa (Medicago sativa L.) as revealed by scanning electron microscopy. Plant Cell Rep. 11: 279–284Google Scholar
  232. Xu XH, Briere C, Vallee N, Borin C, van Lammeren AAM, Alibert G & Souvre A (1999) In vivo labeling of sunflower embryonic tissues by fluorescently labeled phenylalkylamine. Protoplasma 210: 52–58Google Scholar
  233. Yang WC, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H & Bisseling T (1994) Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6: 1415–1426Google Scholar
  234. Yarbrough JA (1932) Anatomical and developmental studies of the foliarembryos of Bryophyllum calcynum. Am. J. Bot. 19: 443–453Google Scholar
  235. Yasuda H, Nakajima M, Ito T, Ohwada T & Masuda H (2001) Partial characterization of genes whose transcripts accumulate preferentially in cell clusters at the earliest stage of carrot somatic embryogenesis. Plant Mol. Biol. 45: 705–712Google Scholar
  236. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In Vitro Embryogenesis in Plants (pp. 205–248). Kluwer Academic Publishers, DordrechtGoogle Scholar
  237. Yu HJ, Moon MS, Lee HS, Mun JH, Kwon YM & Kim SG (1999) Analysis of cDNAs expressed during first cell division of petunia petal protoplast cultures using expressed sequence tags. Mol. Cell. 9: 258–264Google Scholar
  238. Zhao J, Morozova N, Williams L, Libs L, Avivi Y & Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S-phase. J. Biol. Chem. 276: 22772–22778Google Scholar
  239. Zimmerman JL (1993) Somatic embryogenesis. Plant Cell 5: 1411–1423Google Scholar
  240. Zuo J, Niu QW, Frugis G & Chua NH (2002) The WUSCHEL gene promotes vegetative to embryonic transition in Arabidopsis. Plant J. 30: 349–359Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Attila Fehér
    • 1
    Email author
  • Taras P. Pasternak
    • 1
  • Dénes Dudits
    • 1
  1. 1.Laboratory of Functional Cell Biology, Institute of Plant Biology, Biological Research CenterHungarian Academy of SciencesSzegedHungary

Personalised recommendations