Russian Journal of Developmental Biology

, Volume 34, Issue 3, pp 185–191 | Cite as

Pluripotency of Bone Marrow Stromal Cells and Perspectives of Their Use in Cell Therapy

  • E. A. Schegel'skaya
  • Yu. E. Mikulinskii
  • A. V. Revishchin
  • E. A. Omel'chenko
  • V. E. Kul'shin
  • V. I. Grishchenko
  • L. I. Korochkin*
Article

Abstract

The possibility of differentiation of insulin-producing cells and neural and glial elements was demonstrated in the culture of bone marrow stromal cells. The perspectives of use of the bone marrow stromal cells in clinical medicine are considered.

bone marrow stromal cells in vitro differentiation neural cells β-cells diabetes retinoic acid conditioned medium pluripotency cell therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianco, P., Riminucci, M., Gronthos, S., and Robey, P.G., Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications, Stem Cells, 2001, vol. 19, no. 3, pp. 180-192.Google Scholar
  2. Chop, M., Zhang, X.H., Li, Y., et al., Spinal Cord Injury in Rat: Treatment with Bone Marrow Stromal Cell Transplantation, Neuroreport, 2000, vol. 11, no. 13, pp. 3001-3005.Google Scholar
  3. Deng, W., Obrocka, M., Fisher, I., and Prockop, D.J., In vitro Differentiation of Human Marrow Stromal Cells into Early Progenitors of Neural Cells by Conditions That Increase Intracellular Cyclic AMP, Biochem. Biophys. Res. Commun., 2001, vol. 282, no. 1, pp. 148-152.Google Scholar
  4. Friedenstein, A.J., Shapiro-Piatetzky, I.I., and Petrakova, K.V., Osteogenesis in Transplants of Bone Marrow Cells, J. Embryol. Exp. Morphol., 1966, vol. 16, pp. 381-390.Google Scholar
  5. Halvorsen, T. and Levine, F., Diabetes Mellitus-Cell Transplantation and Gene Therapy Approaches, Curr. Mol. Med., 2001, vol. 1, no. 2, pp. 273-286.Google Scholar
  6. Hofstetter, C.P., Schwarz, E.J., Hess, D., et al., Marrow Stromal Cells Form Guiding Strands in the Injured Spinal Cord and Promote Recovery, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 4, pp. 2199-2204.Google Scholar
  7. Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., et al., Pluripotency of Mesenchymal Stem Cells Derived from Adult Marrow, Nature (London), 2002, vol. 418, pp. 41-49.Google Scholar
  8. Krebsbach, P.H., Kuznetsov, S.A., Bianco, P., and Robey, P.G., Bone Marrow Stromal Cells: Characterization and Clinical Application, Biol. Med, 1999, vol. 10, no. 2, pp. 165-181.Google Scholar
  9. Lu, D., Wang, L., Chen, J., et al., Intraarterial Administration of Marrow Stromal Cells in a Rat Model of Traumatic Brain Injury, Neurotrauma, 2000, vol. 18, no. 8, pp. 813-819.Google Scholar
  10. Machmood, A., Lu, D., Wang, L., and Chop, M., Treatment of Traumatic Brain Injury in Female Rats with Intravenous Administration of Bone Marrow Stromal Cells, Neurosurgery, 2001, vol. 49, no. 5, pp. 1196-1203.Google Scholar
  11. Makino, S., Fukuda, K., Miyoshi, S., et al., Cardiomyocytes Can Be Generated from Marrow Stromal Cells in vitro, J.?Clin. Invest, 1999, vol. 103, no. 5, pp. 697-705.Google Scholar
  12. Orlic, D., Kajstura, J., Chimrnti, S., et al., Bone Marrow Cells Regenerate Infarcted Myocardium, Nature (London), 2001, vol. 410, no. 6829, pp. 701-705.Google Scholar
  13. Petersen, B.E., Bowen, W.C., Patrene, K.D., et al., Bone Marrow as a Potential Source of Hepatic Oval Cells, Science, 1999, vol. 284, no. 5417, pp. 1168-1170.Google Scholar
  14. Prockop, D.J., Azizi, S.A., Phinney, D.G., et al., Potential Use of Marrow Stromal Cells as Therapeutic Vectors for Diseases of the Central Nervous System, Prog. Brain Res., 2000, vol. 128, pp. 293-297.Google Scholar
  15. Robert, E., Schwartz, R.E., Reyes, M., et al., Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Functional Hepatocyte-Like Cells, J. Clin. Invest., 2002, vol. 109, no. 10, pp. 1291-1302.Google Scholar
  16. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al., Adult Bone Marrow Stromal Cells Differentiate into Neural Cells in vitro, Exp. Neurology, 2000, vol. 164, no. 2, pp. 247-256.Google Scholar
  17. Sasaki, M., Honmou, O., Akiyama, Y., et al., Transplantation of an Acutely Isolated Bone Marrow Fraction Repairs Demyelinated Adult Rat Spinal Cord Axons, Glia, 2001, vol. 35, no. 1, pp. 26-34.Google Scholar
  18. Scharfmann, R. and Czernichow, P., Differentiation and Growth of Pancreatic Beta Cells, Diabetes Metab., 1996, vol. 22, no. 4, pp. 223-228.Google Scholar
  19. Tomita, M., Adachi, Y., Yamada, H., et al., Bone Marrow-Derived Stem Cells Can Differentiate into Retinal Cells in Injured Rat Retina, Stem Cells, 2002, vol. 20, pp. 279-283.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • E. A. Schegel'skaya
    • 1
    • 2
  • Yu. E. Mikulinskii
    • 1
    • 2
  • A. V. Revishchin
    • 3
  • E. A. Omel'chenko
    • 1
    • 2
  • V. E. Kul'shin
    • 1
  • V. I. Grishchenko
    • 2
  • L. I. Korochkin*
    • 4
  1. 1.Laboratory of Molecular Diagnostics “Virola,”KharkovUkraine
  2. 2.Institute of Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkovUkraine
  3. 3.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  4. 4.Kol'tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations