Cellulose

, Volume 10, Issue 2, pp 159–169 | Cite as

Cellulose hydrolysis – the role of monocomponent cellulases in crystalline cellulose degradation

Article

Abstract

Changes in the molecular structure of cellulose during hydrolysis with four recombinant β-1,4-glycanases from the cellulolytic bacterium Cellulomonas fimi were assessed and compared in an attempt to elucidate the mechanism of crystalline cellulose degradation. It was apparent that the two endoglucanases, Cel6A and Cel5A, degraded sigmacell cellulose differently; Cel5A liberated more soluble sugars (cellobiose and cellotriose) and significantly altered the molecular weight distribution, while Cel6A had a limited effect on the polymer size and liberated primarily cellobiose and glucose. Additionally, both endoglucanases slightly increased the crystallinity of cellulose. In contrast, the cellobiohydrolases, Cel6B and Cel48A, had no effect on cellulose molecular weight and liberated only cellobiose and cellotriose. However, Cel48A was shown to be effective at reducing the crystallinity of the cellulosic substrate, while Cel6B increased the crystallinity index. Synergistic hydrolysis using combinations of the different enzymes showed that, although the cellulose was extensively hydrolysed, the molecular structure of the substrate was similar to the original material. This phenomenon suggests that the actions of individual monocomponent enzymes are offset by the concurrent modification by the complementing enzymes during synergistic hydrolysis.

Cellobiohydrolase Cellulomonas fimi Cellulose hydrolysis Crystallinity Degree of polymerisation Endoglucanase FTIR GPC NMR Oligosaccharide Saccharification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atalla R.H. 1993. The Structures of Native Celluloses. Foundation for Biotechnical and Industrial Fermentation Research, Espoo, Finland.Google Scholar
  2. Carrard G., Koivula A., Söderlund H. and Béguin P. 2000. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 97: 10342-10347.Google Scholar
  3. Chanzy H. and Henrissat B. 1985. Undirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184: 285-288.Google Scholar
  4. Fan L.T., Lee Y.-H. and Beardmore D.H. 1980. Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol. Bioeng. 22: 177-199.Google Scholar
  5. Fan L.T., Lee Y.-H. and Beardmore D.R. 1981. The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng. 23: 419-424.Google Scholar
  6. Gilkes N.R., Kwan E., Kilburn D.G., Miller R.C. and Warren R.A.J. 1997. Attack of carboxymethylcellulose at opposite ends by two cellobiohydrolases from Cellulomonas fimi. J. Biotechnol. 57: 83-90.Google Scholar
  7. Gilkes N.R., Warren R.A.J., Miller R.C. Jr. and Kilburn D.G. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263: 10401-10407.Google Scholar
  8. Gübitz G.M., Mansfield S.D., Böhm D. and Saddler J.N. 1998. Effect of endoglucanases and hemicellulases in magnetic and floatation deinking of xerographic and laser-printed papers. J. Biotechnol. 65: 209-219.Google Scholar
  9. Imai T., Boisset C., Samejima M., Igarashi K. and Sugiyama J. 1998. Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett. 432: 113-116.Google Scholar
  10. Irwin D.C., Spezio M., Walker L.P. and Wilson D.B. 1993. Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol. Bioeng. 42: 1002-1013.Google Scholar
  11. Kleman-Leyer K., Gilkes N.R., Miller R.C. Jr. and Kirk T.K. 1994. Changes in molecular size distribution of insoluble celluloses by the action of recombinant Cellulomonas fimi cellulases. Biochem. J. 302: 463-469.Google Scholar
  12. Kleman-Leyer K.M., Siika-aho M., Teeri T.T. and Kirk T.K. 1996. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl. Environ. Microbiol. 62: 2883-2887.Google Scholar
  13. Koyama M., Helbert W., Imai T., Sugiyama J. and Henrissat B. 1997. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94: 9091-9095.Google Scholar
  14. Mansfield S.D., Mooney C. and Saddler J.N. 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816.Google Scholar
  15. Mansfield S.D., Saddler J.N. and Gübitz G.M. 1998. Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb. Technol. 23: 133-140.Google Scholar
  16. Meinke A., Gilkes N.R., Kilburn D.G., Miller J.R.C. and Warren R.A.J. 1993. Cellulose-binding polypeptides from Cellulomonas fimi: endoglucanase D (CenD), a family A β-1,4-glucanase. J. Bacteriol. 175: 1910-1918.Google Scholar
  17. Meinke A., Gilkes N.R., Kwan E., Kilburn D.G., Warren R.A.J. and Miller R.C. Jr. 1994. Cellobiohydrolase A from the cellulolytic bacterium Cellulomonas fimi is a β-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II. Mol. Microbiol. 12: 413-422.Google Scholar
  18. Michell A.J. 1989. Second derivative FTIR spectra of woods. In: Schuerch C. (ed.), Cellulose and Wood-Chemistry and Technology. John Wiley & Sons, Inc., New York, pp. 995-1009.Google Scholar
  19. Newman R.H. and Hemmingson J.A. 1990. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44: 351-355.Google Scholar
  20. Nidetzky B., Hayn M., Macarron R. and Steiner W. 1993. Synergism of Trichoderma reesei cellulases while degrading different celluloses. Biotechnol. Lett. 15: 71-76.Google Scholar
  21. Schroeder L.R. and Haigh F.C. 1979. Cellulose and wood pulp polysaccharides. Gel permeation chromatography analysis. Tappi 62: 103-105.Google Scholar
  22. Shen H., Gilkes N.R., Kilburn D.G., Miller R.C. and Warren R.A.J. 1995a. Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. Biochem. J. 311: 67-74.Google Scholar
  23. Shen H., Meinke A., Tomme P., Damude H., Kwan E., Kilburn D.G. et al. 1995b. Cellulomonas fimi cellobiohydrolases. In: Saddler J.N. and Penner M.H. (eds), Enzymatic Degradation of Insoluble Carbohydrates. American Chemical Society Symposium Series. American Chemical Society, Washington, DC, pp. 174-196.Google Scholar
  24. Srishdsuk M., Kleman-Leyer K., Keränen S., Kirk T.K. and Teeri T.T. 1998. Modes of action on cotton and bacterial cellulose of a homologous endoglucanase-exoglucanase pair from Trichoderma reesei. Eur. J. Biochem. 251: 885-892.Google Scholar
  25. Stålbrand H., Mansfield S.D., Saddler J.N., Kilburn D.G., Warren R.A.J. and Gilkes N.R. 1998. Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi β-1,4-glucanases. Appl. Environ. Microbiol. 64: 2374-2379.Google Scholar
  26. Teeri T.T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Tibtech 15: 160-167.Google Scholar
  27. Valtasaari L. and Saarela K. 1975. Determination of chain length distribution of cellulose by gel permeation chromatography using the tricarbanilate derivative. Paperi ja Puu-Papper och Trä 57: 5-10.Google Scholar
  28. Walker L.P. and Wilson D.B. 1991. Enzymatic hydrolysis of cellulose: an overview. Biores. Technol. 36: 3-14.Google Scholar
  29. Wood T.M. and McCrae S.I. 1979. Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181: 181-209.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.The Department of Wood ScienceUniversity of British Columbia, 4th Floor, Forest Science CentreVancouverCanada
  2. 2.School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations