Biodegradation

, Volume 14, Issue 2, pp 65–72

Heteroaromatic monothiocarboxylic acids from Pseudomonas spp.

  • H. Budzikiewicz
Article

Abstract

Pyridine derivatives substituted with monothiocarboxylic acid groups are the uniquemetabolites of certain Pseudomonas species. Pyridine-2,6-di-(monothiocarboxylic acid) 1a was found during a screening program for antibiotically active bacterial metabolites due to its ability to complex Fe3+. The structure of this complex, itsredox behavior and the biogenesis of the ligand molecule were studied in detail. Thislead to the discovery of a new class of natural products, viz. acylsulfenic acid derivatives. Interest in 1a was revived shortly when complexes with other metals were studied as models for sulfur-containing enzymes. It could also be shown that a quinoline monothiocarboxylic acid derivative acted as an alternative siderophorefor Pseudomonas fluorescens. But a real renaissance was observed only whenthe role of 1a in the degradation of CCl4 by Pseudomonas stutzeri became evident.

bacterial metabolites Pseudomonas thiocarboxylic acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beiner JM, Lecadet D, Paquer D, Thuillier A & Vialle J (1973) Réaction du diazométhane avec composés thiocarbonylés; préparation de thiiranes. Bull. Soc. Chim. France 1979–1983Google Scholar
  2. Brot N & Weissbach H (1991) Biochemistry of methionine sulfoxide residues in proteins. BioFactors 3: 91–96Google Scholar
  3. Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol. Rev. 104: 209–228Google Scholar
  4. Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z. Naturforsch. 52c: 713–720Google Scholar
  5. Budzikiewicz H, Hildebrand U, Ockels W, Reiche M & Taraz K (1983) Weitere aus dem Kulturmedium von Pseudomonas putida isolierte Pyridinderivate - Genuine Metaboliten oder Artefakte? Z. Naturforsch. 38b: 516–520Google Scholar
  6. Budzikiewicz H, Lange E & Ockels W (1981) The mass spectral fragmentation behavior of pyridine carboxylic and thiocarboxylic acid esters. Phosphorus and Sulfur 11: 33–45Google Scholar
  7. Cortese MS, Caplan AB, Crawford RL (2002) Structural, functional, and evolutionary analysis of moeZ, a gene encoding an enzyme required for the synthesis of the Pseudomonas metabolite, pyridine-2,6-bis(thiocarboxylic acid). BMC Evolut. Biol. 2:in pressGoogle Scholar
  8. Cortese MS, Paszczynski A, Lewis TA, Sebat JL, Borek V & Crawford RL (2002) Metal chelating of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. BioMetals 15: 103–120Google Scholar
  9. Criddle CS, deWitt JT, Grbic-Galic D & McCarty PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246Google Scholar
  10. Dybas MJ, Tatara GM & Criddle CS (1995) Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl. Environ. Microbiol. 61: 758–762Google Scholar
  11. Espinet P, García-Orodea E & Miguel SA (2000) Mesogenic palladium complexes with pincer ligands from dipicolinic acid. Inorg. Chem. 39: 3645–3651Google Scholar
  12. Espinet P, Lorenzo C, Miguel JA, Bois C & Jeannin Y (1994) Palladium complexes with the tridentate dianionic ligand pyridine-2,6-bis(thiocarboxylate), pdtc. Crystal Structure of (n-Bu4N)[Pd(pdtc)Br]. Inorg. Chem. 33: 2052–2055Google Scholar
  13. Gross D (1970) Naturstoffe mit Pyridinstruktur und ihre Biosynthese. In: Herz W, Grisebach H & Scott AI (Eds), Fortschritte der Chemie organischer Naturstoffe, Vol 28 (pp 109–161). Springer, Wien.Google Scholar
  14. Hersman LE, Huang A, Maurice PA & Forsythe JH (2000) Siderophore production and iron reduction by Pseudomonas mendocina in response to iron depravation. Geomicrobiology J 17: 261–273Google Scholar
  15. Hersman L, Lloyd T & Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim. Cosmochim. Acta 59: 3327–3330Google Scholar
  16. Hersman L, Maurice P & Sposito G (1996) Iron acquisition from hydrous Fe(III)-oxides by an aerobic Pseudomonas sp. Chem Geology 132: 25–31Google Scholar
  17. Hildebrand U, Hübner J & Budzikiewicz H (1986) Synthese von (Alkoxythio)carbonyl-Derivaten (Acylsulfensäureestern) des Pyridins. Tetrahedron 42: 5969–5972Google Scholar
  18. Hildebrand UHW & Lex J (1989) Untersuchungen zur Struktur von Co(III)-und Ni(II)-Komplexen der Pyridin-2,6-di(monothiocarbonsäure). Z. Naturforsch. 44b: 475–480Google Scholar
  19. Hildebrand U, Lex J, Taraz K, Winkler S, Ockels W & Budzikiewicz H (1984a) Untersuchungen zum Redox-System Bis(pyridin-2,6-dicarbothioato)-ferrat(II)/ferrat(III). Z. Naturforsch. 39b: 1607–1613Google Scholar
  20. Hildebrand U, Ockels W, Lex J & Budzikiewicz H (1983) Zur Struktur eines 1:1-Adduktes von Pyridin-2,6-dicarbothiosäure und Pyridin. Phosphorus and Sulfur 16: 361–364Google Scholar
  21. Hildebrand U, Taraz K & Budzikiewicz H (1984b) Synthese von 2H-markierten Pyridinderivaten. J Labelled Comp. Radiopharm 22: 293-296Google Scholar
  22. Hildebrand U, Taraz K & Budzikiewicz H (1985a) [(Methoxythio) carbonyl]pyridine derivatives - a new class of sulfur compounds. Tetrahedron Lett 26: 4349–4350Google Scholar
  23. Hildebrand U, Taraz K & Budzikiewicz H (1985b) [(Methoxythio)carbonyl]pyridin-Derivate, eine neue Verbindungsklasse aus Pseudomonas putida. Z. Naturforsch. 40b: 1563–1565Google Scholar
  24. Hildebrand U, Taraz K & Budzikiewicz H (1986) 6-(Hydroxythio)carbonylpyridin-2-carbonsäure und Pyridin-2-carbonsäure-6-monothiocarbonsäure als biosynthetische Zwischenstufen bei der Bildung von Pyridin-2,6-di(monothiocarbonsäure) aus Pyridin-2,6-dicarbonsäure. Z. Naturforsch. 41c: 691–694Google Scholar
  25. Hildebrand U, Taraz K, Budzikiewicz H, Korth H & Pulverer G (1985c) Dicyano-bis(pyridin-2,6-dicarbothioato)-ferrat (II)/ferrat (III), ein weiteres eisenhaltiges Redoxsystem aus der Kulturlösung eines Pseudomonas-Stammes. Z. Naturforsch. 40c: 201–207Google Scholar
  26. Krüger HJ & Holm RH (1990) Stabilization of trivalent nickel in tetragonal NiS4N2 and NiN6 environments: synthesis, structures, redox potentials, and observations related to [NiFe]-hydrogenases. J. Am. Chem. Soc. 112: 2955–2963Google Scholar
  27. Lee CH, Lewis TA, Paszczynski A & Crawford RL (1999) Identification of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem. Biophys. Res. Commun. 261: 562–566Google Scholar
  28. Lewis TA, Cortese MS, Sebat JL, Green TL, Lee CH & Crawford RL (2000) A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Envir. Microbiol. 2: 407–416Google Scholar
  29. Lewis TA & Crawford RL (1993) Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC. Appl. Environ. Microbiol. 59: 1635–1641Google Scholar
  30. Lewis TA & Crawford RL (1995) Transformation of carbon tetrachloride via sulfur and oxygen substitution by Pseudomonas sp. strain KC. J. Bacteriol. 177: 2204–2208Google Scholar
  31. Lewis TA, Paszczynski A, Gordon-Wylie SW, Jeedigunta S, Lee CH & Crawford RL (2001) Carbon tetrachloride dechlorination by bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ. Sci. Technol. 35: 552–559Google Scholar
  32. Michal G (ed) (1999) Biochemical Pathways. Spectrum: HeidelbergGoogle Scholar
  33. Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V & Cornelis P (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl. Environ. Microbiol. 66: 487–492Google Scholar
  34. Neuenhaus W, Budzikiewicz H, Korth H, & Pulverer G (1980) 8-Hydroxy-4-methoxy-monothiochinaldinsäure - eine weitere Thiosäure aus Pseudomonas. Z. Naturforsch. 35b: 1569–1571Google Scholar
  35. Ockels W, Römer A, Budzikiewicz H, Korth H & Pulverer G (1978) An Fe(II) complex of pyridine-2,6-di-(monothiocarboxylic acid) - a novel bacterial metabolic product. Tetrahedron Lett. 3341–3342Google Scholar
  36. Or-Rashid MM, Onodera R, Wadud S, Oshiro S, Okada T (2001) Catabolism of methionone and threonine in vitro by mixed ruminal bacteria and protozoa. Amino Acids 21: 383–391Google Scholar
  37. Radermacher U (1983) Versuche zur Darstellung der Phenazin-1-thiocarbonsäure. Staatsexamensarbeit, Univ. KölnGoogle Scholar
  38. Sebat JL, Paszczynski A, Cortese MS & Crawford RL (2001) Antimicrobial properties of pyridine-2,3-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl. Environ. Microbiol. 67: 3934–3942Google Scholar
  39. SepÚlveda-Torres L delC, Zhou J, Guasp C, Lalucat J, Knaebel D, Plank JL & Criddle CS (2001) Pseudomonas sp. strain KC represents a new genomovar within Pseudomonas stutzeri. Int. J. Syst. Evolut. Microbiol. 51: 2013–2019Google Scholar
  40. SepÚlveda-Torres LdelC, Huang A, Kim H & Criddle CS (2002) Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. J. Mol. Microbiol. Biotechnol. 4: 151–161Google Scholar
  41. Stolworthy JC, Paszczynski A, Korus R & Crawford RL (2001) Metal binding by pyridine-2,6-bis(thiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegrad. 12: 411–418Google Scholar
  42. Vartivarian SE & Cowart RE (1999) Extracellular iron reductases: identification of a new class of enzymes by siderophoreproducing microorganisms. Arch. Biochem. Biophys 364: 75–82Google Scholar
  43. Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radical Biol. Med. 18: 93–105Google Scholar
  44. Xiao R & Kisaalita WS (1998) Fluorescent pseudomonad pyoverdines bind and oxidize ferrous iron. Appl. Environ. Microbiol. 64: 1472–1476Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • H. Budzikiewicz
    • 1
  1. 1.Institut für Organische ChemieUniversität zu KölnKölnGermany

Personalised recommendations