Mathematical Notes

, Volume 73, Issue 5–6, pp 625–635 | Cite as

Convex Realizations of Planar Linear Trees

  • N. S. Gusev


We prove a necessary condition for the existence of a convex realization of a planar linear tree. In the case of broken lines, it is shown that this condition is sufficient; a continuous algorithm constructing such a realization is found.

planar trees convex realization minimal networks Steiner problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Fomenko and A. A. Tuzhilin, “Elements of Geometry and Topology of Minimal Surfaces in Three-Dimensional Space,” Transl. Math. Monographs, 93 (1992).Google Scholar
  2. 2.
    A. O. Ivanov and A. A. Tuzhilin, “Geometry of minimal networks and the one-dimensional Plateau problem,” Uspekhi Mat. Nauk [Russian Math. Surveys], 47 (1992), no. 2(284), 53–115.Google Scholar
  3. 3.
    A. O. Ivanov and A. A. Tuzhilin, Minimal Networks. Steiner Problem and Its Generalizations, CRC Press, 1994.Google Scholar
  4. 4.
    Z. A. Melzak, “On the problem of Steiner,” Canad. Math. Bull., 4 (1960), 143–148.Google Scholar
  5. 5.
    M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Problem is NP-Complete,” SIAM J. Appl. Math., 32 (1977), 826–834.Google Scholar
  6. 6.
    A. O. Ivanov and A. A. Tuzhilin, “Rotation number of planar linear trees,” Mat. Sb. [Russian Acad. Sci. Sb. Math.], 187 (1996), no. 8, 41–92.Google Scholar
  7. 7.
    A. O. Ivanov and A. A. Tuzhilin, “The Steiner Problem for convex boundaries or planar minimal networks,” Mat. Sb. [Math. USSR-Sb.], 182 (1991), no. 12, 1813–1844.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • N. S. Gusev
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityRussia

Personalised recommendations