Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons

  • Manuela da Silva
  • Carl E. Cerniglia
  • Jairaj V. Pothuluri
  • Vanderlei P. Canhos
  • Elisa Esposito


Nineteen filamentous fungi, isolated from estuarine sediments in Brazil, were screened for degradation of polycyclic aromatic hydrocarbons (PAH). The fungal isolates were incubated with pyrene. The cultures were extracted and metabolites in the extracts were detected by high performance liquid chromatography (HPLC) and u.v. spectral analyses. Six fungi were selected for further studies using [4,5,9,10-14C]pyrene. Cyclothyrium sp., Penicillium simplicissimum, Psilocybe sp., and a sterile mycelium demonstrated the ability to transform pyrene. Cyclothyrium sp. was the most efficient fungus, transforming 48% of pyrene to pyrene trans-4,5-dihydrodiol, pyrene-1,6-quinone, pyrene-1,8-quinone and 1-hydroxypyrene. This fungus was also evaluated with a synthetic mixture of PAH. After 192 h of incubation, Cyclothyrium sp. was able to degrade simultaneously 70, 74, 59 and 38% of phenanthrene, pyrene, anthracene and benzo[a]pyrene, respectively.

Bioremediation filamentous fungi mycoremediation PAH mixture pyrene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baek, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N. & Perry, R. 1991 A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate, and behavior. Water, Air and Soil Pollution 60, 279–300.Google Scholar
  2. Bezalel, L., Hadar, Y., Fu, P.P., Freeman, J.P. & Cerniglia, C.E. 1996 Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology 62, 2554–2559.Google Scholar
  3. Boonchan, S., Britz, M.L. & Stanley, G.A. 2000 Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology 66, 1007–1019.Google Scholar
  4. Bumpus, J.A., Tien, M., Wright, D. & Aust, S.D. 1985 Oxidation of persistent environmental pollutants by white rot fungus. Science 228, 1434–1436.Google Scholar
  5. Cerniglia, C.E. 1992 Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368.Google Scholar
  6. Cerniglia, C.E., Kelly, D.W., Freeman, J.P. & Miller, D.W. 1986 Microbial metabolism of pyrene. Chemico-Biological Interactions 57, 203–216.Google Scholar
  7. Cerniglia, C.E. & Sutherland, J.B. 2001 Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In British Mycological Society Symposium Series, Fungi in Bioremediation, ed. Gadd, G.M. pp. 136–187. Cambridge: Cambridge University Press. ISBN 0521781191.Google Scholar
  8. Cerniglia, C.E., White, G.L. & Heflich, R.H. 1985 Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Archives of Microbiology 143, 105–110.Google Scholar
  9. Colombo, J.C., Cabello, M. & Arambarri, A.M. 1996 Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolytic fungi. Environmental Pollution 94, 355–362.Google Scholar
  10. da Silva, M., Umbuzeiro, G.A., Pfenning, L.H., Canhos, V.P. & Esposito, E. (in press) Filamentous fungi isolated from estuarine sediments contaminated with industrial discharges. Soil and Sediment Contamination 12(3).Google Scholar
  11. Field, J.A., Baten, H., Boelsma, F. & Ruelkens, W.H. 1996 Biological elimination of polycyclic aromatic hydrocarbons in solvent extracts of polluted soil by the white rot fungus, Bjerkandera sp. strain BOS55. Environmental Technology 17, 317–323.Google Scholar
  12. Garon, D., Krivobok, S. & Seigle-Murandi, F. 2000 Fungal degradation of fluorene. Chemosphere 40, 91–97.Google Scholar
  13. Giraud, F., Guiraud, P., Kadri, M., Blake, G. & Steiman, R. 2001 Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Research 35, 4126–4136.Google Scholar
  14. Hammel, K.E. 1995 Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives 103(Suppl. 5), 41–43.Google Scholar
  15. Juhasz, A.L. & Naidu, R. 2000 Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation 45, 57–88.Google Scholar
  16. Keith, L.H. & Telliard, W.A. 1979 Priority pollutants I-a perspective view. Environmental Science and Technology 13, 416–423.Google Scholar
  17. Kelley, I. & Cerniglia, C.E. 1995 Degradation of a mixture of highmolecular-weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. Journal of Soil Contamination 4, 77–91.Google Scholar
  18. Krivobok, S., Miriouchkine, E., Seigle-Murandi, F. & Benoit-Guyod, J.-L. 1998 Biodegradation of anthracene by soil fungi. Chemosphere 37, 523–530.Google Scholar
  19. Lang, E., Nerud, F., Novotná, E., Zadražil, F. & Martens, R. 1996 Production of ligninolytic exoenzymes and 14C-pyrene mineralization by Pleurotus sp. in lignocellulose substrate. Folia Microbiologica 41, 489–493.Google Scholar
  20. Lange, B., Kremer, S., Sterner, O. & Anke, H. 1994 Pyrene metabolism in Crinipellis stipitaria: identification of trans-4,5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Applied and Environmental Microbiology 60, 3602–3607.Google Scholar
  21. Lange, B., Kremer, S., Sterner, O. & Anke, H. 1996 Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius and Marasmiellus. Canadian Journal of Microbiology 42, 1179–1183.Google Scholar
  22. Launen, L.A., Pinto, L.J. & Moore, M.M. 1999 Optimization of pyrene oxidation by Penicillium janthinellum using responsesurface methodology. Applied Microbiology and Biotechnology 51, 510–515.Google Scholar
  23. Launen, L., Pinto, L., Wiebe, C., Kiehlmann, E. & Moore, M. 1995 The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Canadian Journal of Microbiology 41, 477–488.Google Scholar
  24. Lijinsky, W. 1991 The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutation Research 259, 251–261.Google Scholar
  25. Matheus, D.R., Bononi, V.L.R. & Machado, K.M.G. 2000 Biodegradation of hexachlorobenzene by Basidiomycetes in soil contaminated with industrial residues. World Journal of Microbiology and Biotechnology 16, 415–421.Google Scholar
  26. Moody, J.D., Freeman, J.P., Doerge, D.R. & Cerniglia C.E. 2001 Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology 67, 1476–1483.Google Scholar
  27. Müncnerová, D. & Augustin, J. 1994 Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresource Technology 48, 97–106.Google Scholar
  28. Novotný, C., Erbanová, P., Šašek, V., Kubtová, A., Cajthaml, T., Lang, E., Krahl, J. & Zadražil, F. 1999 Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10, 159–168.Google Scholar
  29. Pothuluri, J.V., Freeman, J.P., Evans, F.E. & Cerniglia, C.E. 1990 Fungal transformation of fluoranthene. Applied and Environmental Microbiology 56, 2974–2983.Google Scholar
  30. Pothuluri, J.V., Selby, A., Evans, F.E., Freeman, J.P. & Cerniglia, C.E. 1995 Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Canadian Journal of Botany 73(Suppl. 1), S1025–S1033.Google Scholar
  31. Rama, R., Sigoillot, J.C., Chaplain, V., Asther, M., Jolivalt, C. & Mougin, C. 2001 Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycyclic Aromatic Compounds 18, 397–414.Google Scholar
  32. Ravelet, C., Krivobok, S., Sage, L. & Steiman, R. 2000 Biodegradation of pyrene by sediment fungi. Chemosphere 40, 557–563.Google Scholar
  33. Sack, U. & Fritsche, W. 1997 Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiology Ecology 22, 77–83.Google Scholar
  34. Sack, U. & Günther, T. 1993 Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. Journal of Basic Microbiology 33, 269–277.Google Scholar
  35. Sack, U., Heinze, T.M., Deck, J., Cerniglia, C.E., Cazau, M.C. & Fritsche, W. 1997a Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Applied and Environmental Microbiology 63, 2906–2909.Google Scholar
  36. Sack, U., Heinze, T.M., Deck, J., Cerniglia, C.E., Martens, R., Zadražil, F. & Fritsche, W. 1997b Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Applied and Environmental Microbiology 63, 3919–3925.Google Scholar
  37. Sack, U., Hofrichter, M. & Fritsche, W. 1997c Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardi. FEMS Microbiology Letters 152, 227–234.Google Scholar
  38. Sack, U., Hofrichter, M. & Fritsche, W. 1997d Degradation of phenanthrene and pyrene by Nematoloma frowardi. Journal of Basic Microbiology 37, 287–293.Google Scholar
  39. Song, H.G. 1999 Comparison of pyrene biodegradation by white rot fungi. World Journal of Microbiology & Biotechnology 15, 669–672.Google Scholar
  40. Sutherland, J.B. 1992 Detoxification of polycyclic aromatic hydrocarbons by fungi. Journal of Industrial Microbiology 9, 53–62.Google Scholar
  41. Wunder, T., Kremer, S., Sterner, O. & Anke, H. 1994 Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Applied Microbiology and Biotechnology 42, 636–641.Google Scholar
  42. Wunder, T., Marr, J., Kremer, S., Sterner, O. & Anke, H. 1997 l-Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Archives of Microbiology 167, 310–316.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Manuela da Silva
    • 1
  • Carl E. Cerniglia
    • 2
  • Jairaj V. Pothuluri
    • 2
  • Vanderlei P. Canhos
    • 3
  • Elisa Esposito
    • 4
  1. 1.Department of Food ScienceSchool of Food Engineering, State University of CampinasCampinas, São PauloBrazil; Tel.:
  2. 2.Department of MicrobiologyINCQS/Fundação Oswaldo CruzRio de JaneiroBrazil
  3. 3.Department of Food ScienceSchool of Food Engineering, State University of CampinasCampinas, São PauloBrazil
  4. 4.Department of Environmental ScienceUniversity of Mogi das CruzesMogi das Cruzes, São PauloBrazil

Personalised recommendations