Origins of life and evolution of the biosphere

, Volume 33, Issue 1, pp 75–94 | Cite as

Recognizing and Interpreting the Fossils of Early Eukaryotes

  • Emmanuelle J. Javaux
  • Andrew H. Knoll
  • Malcolm Walter


Using molecular sequence data, biologists cangenerate hypotheses of protistan phylogeny and divergence times. Fossils, however, provide our only direct constraints on the timingand environmental context of early eukaryotic diversification. Forthis reason, recognition of eukaryotic fossils in Proterozoic rocksis key to the integration of geological and comparative biologicalperspectives on protistan evolution. Microfossils preserved in shales of the ca. 1500 Ma Roper Group, northern Australia, display characters that ally them to the Eucarya, but, at present, attribution to any particular protistan clade is uncertain. Continuing research on wall ultrastructure and microchemistry promises new insights into the nature and systematic relationshipsof early eukaryotic fossils.

chemistry early eukaryotes evolution molecular phylogeny morphology Proterozoic ultrastructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, S. T. and Sweet, I. P.: 2000, Tectonic Control on Third-order Sequences in a Siliciclastic Ramp-style Basin: An Example from the Roper Superbasin (Mesoproterozoic), Northern Australia, Austral. J. Earth Sci. 47, 637–657.Google Scholar
  2. Amard, B.: 1992, Ultrastructure of Chuaria (Walcott) Vidal and Ford (Acritarcha) from the Late Proterozoic Pendjari Formation, Benin and Burkina-Faso, West Africa, Prec. Res. 57, 121–133.Google Scholar
  3. Anbar, A. D. and Knoll, A. H.: 2002, Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 297(5584), 1137–1142.Google Scholar
  4. Arouri, K., Greenwood, P. F. and Walter, M. R.: 1999, A Possible Chlorophycean Affinity of some Neoproterozoic Acritarchs, Org. Geochem. 30, 1323–1337.Google Scholar
  5. Arouri, K., Greenwood, P. F. and Walter, M. R.: 2000, Biological Affinities of Neoproterozoic Acritarchs from Australia: Microscopic and Chemical Characterisation, Org. Geochem. 31, 75–89.Google Scholar
  6. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. and Doolittle, F.: 2000, A Kingdom-level Phylogeny of Eukaryotes Based on Combined Protein Data, Science 290, 972–976.Google Scholar
  7. Barfod, G. H., Albarède, F., Knoll, A. H., Xiao, S., Télouk, P., Frei, R. and Baker, J.: 2002, New Lu-Hf and Pb-Pb Age Constraints on the Earliest Animal Fossils, Earth Planet. Sci. Lett. 201(1), 203–212.Google Scholar
  8. Bartley, J. K.: 1996, Actualistic Taphonomy of Cyanobacteria: Implications for the Precambrian Fossil Record, Palaios 11, 571–586.Google Scholar
  9. Bloch, K.: 1994, Evolutionary Perfection of a Small Molecule, in Blondes in Venetian Paintings, the Nine-banded Armadillo, and other Essays in Biochemistry, Yale University Press, Vol. 2, pp. 15–36.Google Scholar
  10. Boone, D. R., Castenholz, R. W. (eds): 2001, Bergey's Manual of Systematic Bacteriology. The Archea and the Deeply Branching and Phototrophic Bacteria, Vol. 1, 2nd ed., Springer, N.Y.Google Scholar
  11. Boyce, C. K., Cody, G. D., Feser, M., Jacobsen, Knoll, A. H. and Wirick, S: 2002, Organic Chemical Differentiation within Fossil Plant Cell Walls Detected with X-ray Spectromicroscopy, Geology 30(11), 1039–1042.Google Scholar
  12. Bouvier, P., Rohmer, M. and Benveniste, P.: 1976, 8(14)-Steroids in the Bacterium Methylococcus capsulatus, Biochem. J. 159, 267–271.Google Scholar
  13. Brocks, J. J., Logan, G. A., Buick, R. and Summons, R. E.: 1999, Archean Molecular Fossils and the Early Rise of Eukaryotes, Science 285, 1033–1036.Google Scholar
  14. Brocks, J. J., Buick, R., Summons, R. E. and Logan, G. A.: 2003a, A Reconstruction of Archean Biological Diversity based on Molecular Fossils from the 2.78–2.45 Billion Year Old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim. Cosmochim. Acta (in press).Google Scholar
  15. Brocks, J. J., Buick, R., Logan, G. A. and Summons, R. E.: 2003b, Composition and Syngeneity of Molecular Fossils from the 2.78–2.45 Billion Year Old Mount Bruce Supergroup, Pilbara Craton, Western Australia, Geochim. Cosmochim. Acta (in press).Google Scholar
  16. Brun, Y. V. and Janakiraman, R.: 2000, 'The Dimorphic Life Cycle of Caulobacter and Stalked Bacteria', in Y. V. Brun and L. J. Shimkets (eds), Prokaryotic Development, ASM Press Washington, DC, pp. 297–318.Google Scholar
  17. Butterfield, N. J., Knoll, A. H. and Swett, K.: 1990, A Bangiophyte Red Alga from the Proterozoic of Artic Canada, Science 250, 104–107.Google Scholar
  18. Butterfield, N. J., Knoll, A. H. and Swett, K.: 1994, Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen, Fossils and Strata 34, 1–84.Google Scholar
  19. Butterfield, N. J.: 2000, Bangiomorpha pubescens n.gen., n.sp.: Implications for the Evolution of Sex, Multicellularity and the Mesoproterozoic/Neoproterozoic Radiation of Eukaryotes, Paleobiology 26, 386–404.Google Scholar
  20. Butterfield, N. J.: 2002, 'A Vaucheria-like Fossil from the Neoproterozoic of Spitsbergen', G. S. A. Annual Meeting, Denver, Co., 26–30 October 2002, Abstracts with Programs, 75–3, p. 169.Google Scholar
  21. Canfield, D. E.: 1998, A New Model for Proterozoic Ocean Chemistry, Nature 396, 450–453.Google Scholar
  22. Cavalier-Smith, T.: 2002, The Neomuran Origin of Archaebacteria, the Negibacteria Root of the Universal Tree and Bacteria Megaclassification, Int. J. Syst. Microb. 52, 7–76.Google Scholar
  23. Claessen, D., Wosten, H. A. B., van Keulen, G., Faber, O. G., Alves, A. M. C. R., Meijer, W. G. and Dijkhuizen, L.: 2002, Two Novel Homologous Proteins of Streptomyces coelicolor and Streptomyces lividans are Involved in the Formation of the Rodlet Layer and Mediate Attachment to a Hydrophobic Surface, Mol. Microb. 44(6), 1483–1492.Google Scholar
  24. Derenne, S., Largeau, C., Casadevall, E., Berkaloff, C. and Rousseau, B.: 1991, Chemical Evidence of Kerogen Formation in Source Rocks and Oil Shales via Selective Preservation of Thin Resistant outer Walls of Microalgae: Origin of Ultralaminae, Geochem. et Cosmochim. Acta 55, 1041–1050.Google Scholar
  25. Dworkin, M.: 1985, Developmental Biology of the Bacteria, The Benjamin/Cummings Publ. Co. Inc., 255 p.Google Scholar
  26. Gamieldien, J., Ptitsyn, A., and Hide, W.: 2002, Eukaryotic Genes in Mycobacterium tuberculosis could have a Role in Pathogenesis and Immunomodulation, Trends Genet. 18(1), 5–8.Google Scholar
  27. German, T. N.: 1990, Organic World One Billion Years Ago, Leningrad, Nauka.Google Scholar
  28. Golubic, S. and Barghoorn, E. S.: 1977, 'Interpretation of Microbial Fossils with Special Reference to the Precambrian', in E. Flugel (ed.), Fossil Algae, Springer, Berlin, pp. 1–14.Google Scholar
  29. Golubic, S., Sergeev, V. N. and Knoll, A. H.: 1995, Mesoproterozoic Archaeoellipsoides: Akinetes of Heterocystous Cyanobacteria, Lethaia 28, 285–298.Google Scholar
  30. Grey, K. and Williams, I. R.: 1990, Problematic Bedding-plane Markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia, Prec. Res. 46(4), 307–328.Google Scholar
  31. Guan, B., Geng, W., Rong, Z. and Du, H.: 1988, The Middle and Upper Proterozoic in the Northern Slope of the Eastern Qinling Ranges, Henan, China, Henan Science and Technology Press, Zhengzhou, 210 pp.Google Scholar
  32. Han, T.-M. and Runnegar, B.: 1992, Megascopic Eukaryotic Algae from the 2.1-billion-year-old Negaunee Iron Formation, Michigan, Science 257, 232–235.Google Scholar
  33. Hoiczyk, E. and Hansel, A.: 2000, Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope, J. Bacteriol. 182(5), 1191–1199.Google Scholar
  34. Holt, J. G. (editor-in-chief): 1984, Bergey's Manual of Systematic Bacteriology, Vol. 4, Williams & Wilkins, Baltimore.Google Scholar
  35. Iizuka, T., Jojima, Y., Fudou, R., Hiraishi, A., Ahn, J.-W. and Yamanaka, S.: 2002, Plesiocystis pacifica gen. nov., sp. nov., a Marine Myxobacterium Containing Dihydrogenated Menaquinone Isolated from the Pacific Coasts of Japan, IJSEM, http: // Scholar
  36. House, C. H., Schopf, J.W., McKeegan, K. D., Coath, C. D., Harrison, T. M. and Stetter, K. O.: 2000, Carbon Isotopic Composition of Individual Precambrian Microfossils Geology 28, 707–710.Google Scholar
  37. Jackson, M. J. and Raiswell, R.: 1991, Sedimentology and Carbon-sulfur Geochemistry of the Velkerri Formation, a Mid-Proterozoic Potential Oil Source in Northern Australia, Precambrian Res. 54, 81–108.Google Scholar
  38. Javaux, E., Knoll, A. H. and Walter, M. R.: 2001, Morphological and Ecological Complexity in Early Eukaryotic Ecosystems, Nature 412, 66–69.Google Scholar
  39. Javaux, E., Knoll, A. H. and Walter, M. R.: 2002a, 'Early Eukaryotic Diversification', Astrobiology Science Conference, NASA Ames Research Center, pp7–11 April 2002, p. 55.Google Scholar
  40. Javaux, E., Knoll, A. H. and Walter, M. R.: 2002b, 'Recognizing and Interpreting the Fossils of Early Eukaryotes', G.S.A. Annual Meeting, Denver, Co., 26–30 October 2002, Abstracts with Programs, 31–1, p. 80.Google Scholar
  41. Jux, U.: 1968, --Uber den Feinbau der Wandung bei Tasmanites Newton, Palaeontogr. Abt. B 124, 112-124.Google Scholar
  42. Kah, L. C., Lyons, T.W. and Chesley, J. T.: 2002, Geochemistry of a 1.2 Ga Carbonate-evaporite Succession, Northern Baffin and Bylot Islands: Implications for Mesoproterozoic Marine Evolution, Prec. Res. 111, 203–234.Google Scholar
  43. Kempe, A., Schopf, J.W., Altermann, W., Kudryavtsev, A. B. and Heckl, W. M.: 2002, Atomic Force Microscopy of Precambrian Microscopic Fossils, P.N.A.S. 99(14), 9117–9120.Google Scholar
  44. Kim, S.-H., Rasmaswamy, S. and Downard, J.: 1999, Regulated Exopolysaccharide Production in Myxococcus xanthus, J. Bacteriol. 181(5), 1496–1507.Google Scholar
  45. Kleeman, G., Poralla, K., Englert, G., Kjosen, H., Liaaen-Jensen, S., Neunlist, S. and Rohmer, M.: 1990, Tetrahymenol from the Phototrophic Bacterium Rhodopseudomonas palustris: First Report of a Gammacerane Triterpene from a Prokaryote, J. Gen. Microb. 136, 2551–2553.Google Scholar
  46. Knoll, A. H.: 1981, 'Paleoecology of Late Precambrian Microbial Assemblages', in K. Niklas (ed.) Paleobotany, Paleoecology, and Evolution, Vol. I, Praeger, New York, pp. 17–54.Google Scholar
  47. Knoll, A. H. and Barghoorn, E. S.: 1977, Archean Microfossils showing Cell Division from the Swaziland System of South Africa, Science 198, 396–398.Google Scholar
  48. Knoll, A. H. and Carroll, S. B.: 1999, Early Animals Evolution: Emerging Views from Comparative Biology and Geology, Science 284(5423), 2129–2137.Google Scholar
  49. Koch, A.: 1996, What Size should a Bacterium be? A Question of Scale, Annu. Rev. Microb. 50, 317–48.Google Scholar
  50. Kokinos, J. P., Eglinton, T. I., Goni, M. A., Boon, J. J., Martoglio, P. A. and Anderson, D. M.: 1998, Characterization of a Highly Resistant Biomacromolecular Material in the CellWall of a Marine Dinoflagellate Resting Cyst, Org. Geochem. 28(5), 265–288.Google Scholar
  51. Kralik, M.: 1982, Rb-Sr Age Determinations on Precambrian Carbonate Rocks of the Carpentarian McArthur Basin, Northern Territory, Australia, Precambrian Res. 18, 157–170.Google Scholar
  52. Kudryavtsev, A. B., Schopf, J. W., Agresti, D. G. and Wdowiak, T. J.: 2001, In situ Laser-Raman Imagery of Precambrian Microscopic Fossils, Proc. Nat. Acad. Sci. U.S.A. 98, 823–826.Google Scholar
  53. Kumar, S.: 1995, Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni Area, Central India, Prec. Res. 72, 171–184.Google Scholar
  54. Lamb, D. C., Kelly, D. E., Manning, N. J. and Kelly, S. L.: 1998, A Sterol Biosynthetic Pathway in Mycobacterium, FEBS Letters 437, 142–144.Google Scholar
  55. Li, C. W., Chen, J.-Y. and Hua, T.-E.: 1998, Precambrian Sponges with Cellular Structures, Science 279, 879–882.Google Scholar
  56. Lybarger, S. R. and Maddock, J. R.: 2001, Polarity in Action: Asymmetric Protein Localization in Bacteria, J. Bacter. 183(11), 3261–3267.Google Scholar
  57. Matsumoto, A., Takahashi, T., Seino, A., Iwai, Y. and Omura, S.: 2000, Actinoplanes capillaceus sp. nov., a New Species of the Genus Actinoplanes, Antonie van Leeuwenhoek 78, 107–115.Google Scholar
  58. Miyadoh, S.: 1997, Atlas of Actinomycetes, The Society for Actinomycetes, Japan, Asakura Publ. Co. Ltd., 223 p.Google Scholar
  59. Moldowan, J. M. and Talyzina, N. M.: 1998, Biogeochemical Evidence for Dinoflagellate Ancestors in the Early Cambrian, Science 281, 1168–1170.Google Scholar
  60. Moldowan, J. M., Dahl, J., Jacobson, S. R., Huizinga, B. R., Fago, F. J., Shetty, R., Watt, D. S. and Peters, K. E.: 1996, Chemostratigraphic Reconstruction of Biofacies: Molecular Evidence Linking Cyst-forming Dinoflagellakes with Pre-Triassic Ancestors, Geology 24(2), 159–162.Google Scholar
  61. Oehler, D. Z.: 1977, Pyrenoid-like Structures in Late Precambrian Algae from the Bitter Springs Formation of Australia, J. Paleont. 51(5), 885–901.Google Scholar
  62. Peat, C. J.: 1981, Comparative Light Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy of Selected Organic Walled Microfossils, J. Microscopy 122(3), 287–294.Google Scholar
  63. Poindexter, J. S. and Staley, J. T.: 1996, Caulobacter and Asticcacaulis Stalk Bands as Indicators of Stalk Age, J. Bacteriol. 178(3), 3939–3948.Google Scholar
  64. Porter, S. M. and Knoll, A. H.: 2000, Testate Amoebae in the Neoproterozoic Era: Evidence from Vase-shaped Microfossils in the Chuar Group, Grand Canyon, Paleobiology 26(3), 360–385.Google Scholar
  65. Porter, S. M., Meisterfeld, R. and Knoll, A. H.: Vase-shaped Microfossils from the Neoproterozoic Chuar Group, Grand Canyon: A Classification Guided by Modern Testate Amoebae, J. Paleontol. (in press).Google Scholar
  66. Prasad, B. and Asher, R.: 2001, Acritarch Biostratigraphy and Lithostratigraphic Classification of Proterozoic and Lower Paleozoic Sediments (Pre-Unconformity Sequence) of Ganga Basin, India, Paleontograph. Indica 5, 151.Google Scholar
  67. Pratt, L. M., Summons, R. E. and Hieshima, G. B.: 1991, Sterane and Triterpane Biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift, Geochem. Cosmochim. Acta 55, 911–916.Google Scholar
  68. Quardokus, E., Din, N. and Brun, Y. V.: 1996, Cell Cycle Regulation and Cell Type-specific Localization of the FtsZ Division Initiation Protein in Caulobacter, P.N.A.S. 93, 6314–6319.Google Scholar
  69. Rainbird, R. H., Stern, R. A., Khudoley, A. K., Kropachev, A. P., Heman, L. M. and Sukhorukov, V. I.: 1998, U-Pb Geochronology of Riphean Sandstone and Gabbro from Southeast Siberia and its bearing on the Laurentia-Siberia Connection, Earth Pl. Sci. Lett. 164, 409–420.Google Scholar
  70. Reichenbach, H. and Dworkin, M.: 2001, 'The Myxobacteria', in M. Dworkin et al. (eds), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn., Release 3.7, 2 November 2001, Springer-Verlag, New York, www.prokaryotes.comGoogle Scholar
  71. Runnegar, B.: 1995, 'Vendobionta or Metazoa?: 1995, Developments in understanding the Ediacara 'Fauna'', in W. E. Reif, F. Westphal and A. Seilacher (eds), Festschrift for Professor Adolf Seilacher in Honor of Reaching his 70th birthday on 24 February 1995, Neues Jahrb. fuer Geol. Palaeontol., Abhandl. Vol. 195, 1–3, pp. 303–318.Google Scholar
  72. Samuelsson, J. and Butterfield, N.: 2001, Neoproterozoic Fossils from the Franklin Mountains, Northwestern Canada: Stratigraphic and Palaeobiological Implications. Prec. Res. 107, 235–251.Google Scholar
  73. Sara, M. and Sleytr, U. B.: 2000, S-Layer Proteins, J. Bacteriol. 182(4), 859–868.Google Scholar
  74. Schlessner, H.: 1987, Verrucomicrobium spinosum gen. nov., sp. nov., a Fimbriated Prosthecate Bacterium, System. Appl. Microbiol. 10, 54–56.Google Scholar
  75. Schneider, D. A., Bickford, M. E., Cannon, W. F., Schulz, K. J. and Hamilton, M. A.: 2002, Age of Volcanic Rocks and Syndepositional Iron Formations, Marquette Range Supergroup; Implications for the Tectonic Setting of Paleoproterozoic Iron Formations of the Lake Superior Region, Can. J. Earth Sci. 39(6), 999–1012.Google Scholar
  76. Schopf, J. W.: 1968, Precambrian Microorganisms from Central and South Australia, Am. J. Botany 55(6P2), 722.Google Scholar
  77. Schopf, J. W.: 1977, Biostratigraphic Usefulness of Stromatolitic Precambrian Microbiotaspreliminary Analysis, Prec. Res. 5(2), 143–173.Google Scholar
  78. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. and Czaja, A. D.: 2002, Laser-Raman Imagery of Earth's Earliest Fossils, Nature 416(6876), 73–76.Google Scholar
  79. Schulz, H. N., Brinkhoff, T., Ferdelman, T. G., Marine, M. H. and Teske, A.: 1999, Dense Populations of a Giant Sulfur Bacterium in Namibian Shelf Sediments, Science 284, 493–495.Google Scholar
  80. Schulz, H. N. and Jorgensen, B. B.: 2001, Big Bacteria, Annu. Rev. Microbiol. 55, 105–137.Google Scholar
  81. Shapiro, L., McAdams, H. H. and Losick, R.: 2002, Generating and Exploiting Polarity in Bacteria, Science 298, 1942–1946.Google Scholar
  82. Shen, Y., Canfield, D. E., and Knoll, A. H.: 2002, Middle Proterozoic Ocean Chemistry: Evidence from the McArthur Basin, Northern Australia, Am. J. Sci. 302, 81–109.Google Scholar
  83. Shen, Y. and Knoll, A., 2002, 'Facies Dependence of S-isotopic Composition in Pyrites from the ~1.5 Ga Roper Group, McArthur Basin, Northern Australia', Astrobiology Science Conference, NASA Ames Research Center, 7–11 April 2002, p. 150.Google Scholar
  84. Soto, G. E. and Hultgren, S. J.: 1999, Bacterial Adhesins: Common Themes and Variations in Architecture and Assembly, J. bacteriol. 181(4), 1059–1071.Google Scholar
  85. Summons, R. E., Brassell, S. C., Eglington, G., Evans, E., Horodyski, R. J., Robinson, N. and Ward, D. M.: 1988b, Distinctive Hydrocarbon Biomarkers from Fossiliferous Sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona, Geochem. Cosmochim. Acta 52, 2625–2637.Google Scholar
  86. Summons, R. E., Jahnke, L. L., Hope, J. M. and Logan, G. A.: 1999, 2-Methylhopanoids as Biomarkers for Cyanobacterial Oxygenic Photosynthesis, Nature 400, 554–557.Google Scholar
  87. Summons, R. E., Powell, T. G. and Boreham, C. J.: 1988a, Petroleum Geology and Geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia. III. Composition of Extractable Hydrocarbons, Geochim. Cosmochim. Acta 51, 3075–3082.Google Scholar
  88. Summons, R. E., Thomas, J., Maxwell, J. R. and Boreham, C. J.: 1992, Secular and Environmental Constraints on the Occurrence of Dinosterane in Sediments, Geochim. et Cosmochim. Acta 56, 2437–2444.Google Scholar
  89. Summons, R. E. and Walter, M. R.: 1990, Molecular Fossils and Microfossils from Proterozoic Sediments, Am. J. Science 290-A, 212–244.Google Scholar
  90. Sun, S. and Zhu, S.: 1998, The Discovery of Micropaleophytes from the Doucun Subgroup, Hutuo Group in Wutai Mountain, Shanxi, China Acta Micropalaeontologica Sinica 15(3), 286–293.Google Scholar
  91. Talyzina, N. M.: 2000, Ultrastructure and Morphology of Chuaria circularis (Walcott, 1899) Vidal and Ford (1985) from the Neoproterozoic Visingso Group, Sweden, Prec. Res. 102, 123–134.Google Scholar
  92. Talyzina, N. M. and Moczydlowska, M.: 2000, Morphological and Ultrastructural Studies of Some Acritarchs from the Lower Cambrian Lukati Formation, Estonia, Rev. Palaeobot. Palynol. 112, 1–21.Google Scholar
  93. Tegelaar, E. W., De Leeuw, J. W., Derenne, S. and Largeau, C.: 1989, A Reappraisal of Kerogen Formation, Geoch. et Cosmoch. Acta 53, 3103–3106.Google Scholar
  94. Volkman, J. K., Kearney, P. and Jeffrey, S. W.: 1990, A New Source of 4-Methyl Sterols and 5á(H)-Stanols in Sediments: Prymnesiophyte Microalgae of the Genus Pavlova, Org. Geochem. 15(5), 489–497.Google Scholar
  95. Volkman, J. K., Barrett, S. M., Dunstan, G. A. and Jeffrey, S. W.: 1993, Geochemical Significance of the Occurrence of Dinosterol and Other 4-Methyl Sterols in a Marine Diatom, Org. Geochem. 20(1), 7–15.Google Scholar
  96. Wall, D.: 1962, Evidence from Recent Plankton Regarding the Biological Affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958, Geol. Mag. 4, 353–362.Google Scholar
  97. Walter, M. R. and Du Rulin: 1990, Coiled Carbonaceous Megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana, Am. J. Sci. 290-A, 133–148.Google Scholar
  98. Walter, M. R., Oehler, J. H. and Oehler, D. Z.: 1976, Megascopic Algae 1300 Million Years Old from the Belt Supergroup, Montana: A Reinterpretation of Walcott's Helminthoidichnites, J. Paleontol. 50(5), 872–881.Google Scholar
  99. Waterbury, J. B. and Stanier, R. Y.: 1978, Patterns of Growth and Development in Pleurocapsalean cyanobacteria, Microbiol. Rev. 42(1), 2–44.Google Scholar
  100. Woods, K. N., Knoll, A. H. and German, T. N.: 1998, Xanthophyte Algae from the Mesoproterozoic/ Neoproterozoic Transition: Confirmation and Evolutionary Implications, G.S.A. Abstracts with Programs, 30, A 232.Google Scholar
  101. Xiao, S., Knoll, A. H., Kaufman, A. J., Yin, L. and Zhang, Y.: 1997, Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform, Precambrian Res. 84, 197–220.Google Scholar
  102. Xiao, S. and Knoll, A. H.: 2000, Phosphatized Embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China, J. Paleont. 74, 767–788.Google Scholar
  103. Xiao, S., Knoll, A. H. and Yuan, X.: 1998a, Morphological Reconstruction of Maiohephyton Bifurcatum. A Possible Brown Alga from the Doushantuo Formation (Neoproterozoic), South China, and its Implication for Stramenopile Evolution, J. Paleont. 72, 1072–1086.Google Scholar
  104. Xiao, S., Zhang, Y. and Knoll, A. H.: 1998b, Three-dimensional Preservation of Algae and Animal Embryos in a Neoproterozoic Phosphorite, J. Paleont. 72, 1072–1086.Google Scholar
  105. Xiao, S., Yuan, X., Steiner, M. and Knoll, A. H.: 2002, Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shales: A Systematic Reassessment of the Miaohe Biota, South China, J. Paleont. 76(2), 347–376.Google Scholar
  106. Yin, L.: 1998, Acanthomorphic Acritarchs from Meso-Neoproterozoic Shales of the Ruyang Group, Shanxi, China, Rev. Palaeobot. Palynol. 98, 15–25.Google Scholar
  107. Zang, W. and Walter, M. R.: 1992, Late Proterozoic and Early Cambrian Microfossils and Biostratigraphy, Amadeus Basin, Central Australia, Memoirs Ass. Austr. Palaeont. 12, 1–132.Google Scholar
  108. Zhang, Y., Yin, L. M., Xiao, S. H. and Knoll, A. H.: 1998, Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China, J. Paleont. 72(4), Suppl. S, 1–52.Google Scholar
  109. Zhang, Z.: 1986, Clastic Facies Microfossils from the Chaunlingguo Formation (1800 Ma) near Jixian, North China, J. Micropalaeontol. 5(2), 9–16.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Emmanuelle J. Javaux
    • 1
  • Andrew H. Knoll
    • 1
  • Malcolm Walter
    • 2
  1. 1.Organismic and Evolutionary Biology Department, Botanical MuseumHarvard UniversityCambridgeU.S.A.
  2. 2.Australian Centre for AstrobiologyAustralia

Personalised recommendations