Advertisement

Aquatic Ecology

, Volume 37, Issue 2, pp 137–150 | Cite as

Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium

  • Koenraad Muylaert
  • Steven Declerck
  • Vanessa Geenens
  • Jeroen Van Wichelen
  • Hanne Degans
  • Jochen Vandekerkhove
  • Katleen Van der Gucht
  • Nele Vloemans
  • Wouter Rommens
  • Danny Rejas
  • Roberto Urrutia
  • Koen Sabbe
  • Moniek Gillis
  • Kris Decleer
  • Luc De Meester
  • Wim Vyverman
Article

Abstract

Components of the pelagic food web in four eutrophic shallow lakes in two wetland reserves in Belgium (‘Blankaart’ and ‘De Maten’) were monitored during the course of 1998–1999. In each wetland reserve, a clearwater and a turbid lake were sampled. The two lakes in each wetland reserve had similar nutrient loadings and occurred in close proximity of each other. In accordance with the alternative stable states theory, food web structure differed strongly between the clearwater and turbid lakes. Phytoplankton biomass was higher in the turbid than the clearwater lakes. Whereas chlorophytes dominated the phytoplankton in the turbid lakes, cryptophytes were the most important phytoplankton group in the clearwater lakes. The biomass of microheterotrophs (bacteria, heterotrophic nanoflagellates and ciliates) was higher in the turbid than the clearwater lakes. Biomass and community composition of micro- and macrozooplankton was not clearly related to water clarity. The ratio of macrozooplankton to phytoplankton biomass – an indicator of zooplankton grazing pressure on phytoplankton – was higher in the clearwater when compared to the turbid lakes. The factors potentially regulating water clarity, phytoplankton, microheterotrophs and macrozooplankton are discussed. Implications for the management of these lakes are discussed.

Alternative stable states Biomanipulation Eutrophic shallow lakes Macrophytes Phytoplankton Zooplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottrell H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A. et al. 1976. A review of some problems in zooplankton production studies; Contribution from the Plankton Ecology Group (IBP). Norw. J. Zool. 24: 41–456.Google Scholar
  2. Brendelberger H. 1991. Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol. Oceanogr. 36: 88–894.Google Scholar
  3. Brooks D. and Dodson S.L. 1965. Predation, body size, and composition of plankton. Science 150: 2–35.Google Scholar
  4. Cottenie K., Nuytten N., Michels E. and De Meester L. 2001. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442: 33–350.Google Scholar
  5. Cyr H. and Curtis J.M. 1999. Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118: 30–315.Google Scholar
  6. Declerck S. 2001. An ecological and ecological-genetic study of Daphnia in a shallow hypertrophic lake. PhD Dissertation, University Gent.Google Scholar
  7. Declerck S., De Meester L., De Smedt P., Rommens W., Vyverman W., Geenens V. et al. 2000. Clear water and charophytes in a hypertrophic pond. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 541.Google Scholar
  8. Declerck S., De Meester L., Geenens V., Vyverman W., Rommens W. and Decleer K. 2001. Experimenteel ecologisch onderzoek naar de herstelkansen van het aquatisch ecosysteem van de Blankaart door hydrologische isolatie en voedselwebmanipulatie. Report IN/KD/98.002. Institute for Nature Conservation, Brussel.Google Scholar
  9. Declerck S., De Meester L., Podoor N. and Conde-Porcuna J.M. 1997. The relevance of size efficiency to biomanipulation theory: a field test under hypertrophic conditions. Hydrobiologia 360: 26–275.Google Scholar
  10. Denys L. 1997. Een paleolimnologische terugblik op de teloorgang van de Blankaart te Woumen (W.-Vlaanderen, België). DiatoMededelingen 21: 4–73.Google Scholar
  11. Douglas R.W. and Rippey B. 2000. The random redistribution of sediment by wind in a lake. Limnol. Oceanogr. 45: 68–694.Google Scholar
  12. Dumont H.J., Van De Velde I. and Dumont S. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, perifyton and benthos of continental waters. Oecologia 19: 7–97.Google Scholar
  13. Ekholm P., Malve O. and Kirkkala T. 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi (Southwest Finland). Hydrobiologia 345: –14.Google Scholar
  14. Fenchel T. 1982. Ecology of heterotrophic microflagellates. 2. Bioenergetics and growth. Mar. Ecol. Progr. Ser. 8: 22–231.Google Scholar
  15. Greenberg A.C., Clesceri L.S. and Eaton A.D. 1992. Standard methods for the examination of water and waste water. American Public Health Association, Baltimore.Google Scholar
  16. Gulati R.D., Lammens E., Meijer M.L. and Vandonk E. 1990. Biomanipulation - tool for water management - preface. Hydrobiologia 200: –10.Google Scholar
  17. Hall D.J., Threlkeld S.T., Burns C.W. and Crowley P.H. 1976. Size-efficiency hypothesis and size structure of zooplankton communities. Ann. Rev. Ecol. Syst. 7: 17–208.Google Scholar
  18. Haney J.F. and Hall D.J. 1973. Sugar-coated Daphnia - preservation technique for Cladocera. Limnol. Oceanogr. 18: 33–333.Google Scholar
  19. Hanson M.A. and Butler M.G. 1994. Responses to food-web manipulation in a shallow waterfowl lake. Hydrobiologia 280: 45–466.Google Scholar
  20. Hansson L.A., Annadotter H., Bergman E., Hamrin S.F., Jeppesen E., Kairesalo T. et al. 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 55–574.Google Scholar
  21. Hansson L.A. and Carpenter S.R. 1993. Relative importance of nutrient availability and food-chain for size and community composition in phytoplankton. Oikos 67: 25–263.Google Scholar
  22. Havens K.E. 1993. An experimental-analysis of macrozooplankton, microzooplankton and phytoplankton interactions in a temperate eutrophic lake. Arch. f. Hydrobiol. 127: –20.Google Scholar
  23. Havens K.E. 1991. Fish-induced sediment resuspension - effects on phytoplankton biomass and community structure in a shallow hypereutrophic lake. J. Plankt. Res. 13: 116–1176.Google Scholar
  24. Hosper H. 1997. Clearing lakes. PhD Dissertation, University Wageningen.Google Scholar
  25. Hosper S.H. and Jagtman E. 1990. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands. Hydrobiologia 200: 52–534.Google Scholar
  26. James W.F. and Barko J.W. 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. f. Hydrobiol. 120: 12–142.Google Scholar
  27. Jeppesen E., Jensen J.P., Kristensen P., Sondergaard M., Mortensen E., Sortkjaer O. et al. 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. 2. Threshold levels, long-term stability and conclusions. Hydrobiologia 200: 21–227.Google Scholar
  28. Jeppesen E., Jensen J.P., Sondergaard M. and Lauridsen T. 1999. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 410: 21–231.Google Scholar
  29. Jones R.C. 1990. The effect of submersed aquatic vegetation on phytoplankton and water-quality in the tidal fresh-water Potomac River. J. Freshw. Ecol. 5: 27–288.Google Scholar
  30. Jürgens K. 1994. Impact of Daphnia on planktonic microbial food webs: a review. Mar. Microb. Food Webs 8: 29–324.Google Scholar
  31. Kamjunke N., Böing W. and Voigt H. 1997. Bacterial and primary production under hypertrophic conditions. Aquat. Microb. Ecol. 13: 2–35.Google Scholar
  32. Kristensen P., Sondergaard M. and Jeppesen E. 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia 228: 10–109.Google Scholar
  33. Lee S. and Fuhrman J.A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Envir. Microbiol. 53: 129–1303.Google Scholar
  34. Meijer M.L., De Boois I., Scheffer M., Portielje R. and Hosper H. 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 409: 1–30.Google Scholar
  35. Meijer M.L., Dehaan M.W., Breukelaar A.W. and Buiteveld H. 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes. Hydrobiologia 200: 30–315.Google Scholar
  36. Menden-Deuer S. and Lessard E.J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45: 56–579.Google Scholar
  37. Peeters B., De Meester L., Denayer B., De Smedt P., Nuydens K. and Ollevier F. 1996. Inventarisatie van het visbestand van de Blankaartvijver en omliggende waterlopen met afvissing van de Kasteel-en Visvijver. Beschrijving van de visstand en voorstellen inzake actief biologisch beheer. Report AMINAL Natuur., Belgium.Google Scholar
  38. Perrow M.R., Meijer M.L., Dawidowicz P. and Coops H. 1997. Biomanipulation in the shallow lakes: state of the art. Hydrobiologia 342: 35–365.Google Scholar
  39. Pontin M. 1978. A Key to the British Freshwater Planktonic Rotifera. Freshwater Biological Association, Ambleside.Google Scholar
  40. Porter K.G. and Feig Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 94–948.Google Scholar
  41. Putt M. and Stoecker D.K. 1989. An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 109–1103.Google Scholar
  42. Reynolds C.S. 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  43. Ruttner-Kolisko A. 1974. Plankton rotifers - Biology and taxonomy. Die Binnengewässer. Lubrecht & Cramer, Port Jervis, XXVI/1 suppl.Google Scholar
  44. Sanders R.W., Porter K.G., Bennett S.J. and DeBiase A.E. 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a fresh-water planktonic community. Limnol. Oceanogr. 34: 67–687.Google Scholar
  45. Scheffer M. 1998. Ecology of Shallow Lakes. Chapman & Hall, London.Google Scholar
  46. Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 27–279.Google Scholar
  47. Schriver P., Bøgestrand J., Jeppesen E. and Sondergaard M. 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions - large-scale enclosure experiments in a shallow eutrophic lake. Freshw. Biol. 33: 25–270.Google Scholar
  48. Shapiro J. and Wright D.I. 1984. Lake restoration by biomanipulation - Round Lake, Minnesota, the first 2 Years. Freshw. Biol. 14: 37–383.Google Scholar
  49. Sherr B.F., Sherr E.B. and Pedrós-Alió C. 1989. Simultaneous measurements of bacterioplankton production and protozoan herbivory. Mar. Ecol. Progr. Ser. 54: 20–219.Google Scholar
  50. Sherr E.B., Caron D.A. and Sherr B.F. 1993. Staining of heterotrophic protists for visualisation via epifluorescence microscopy. In: Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds), Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, pp. 21–228.Google Scholar
  51. Slusarczyk M. 1997. Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia 342: 21–221.Google Scholar
  52. Verity P.G. and Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Progr. Ser. 130: 27–293.Google Scholar
  53. Weisse T., Müller H., Pinto-Coelho M., Schweizer A., Springmann D. and Baldinger G. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large pre-alpine lake. Limnol. Oceanogr. 35: 78–794.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Koenraad Muylaert
    • 1
  • Steven Declerck
    • 2
  • Vanessa Geenens
    • 1
  • Jeroen Van Wichelen
    • 1
  • Hanne Degans
    • 2
  • Jochen Vandekerkhove
    • 2
  • Katleen Van der Gucht
    • 1
    • 3
  • Nele Vloemans
    • 1
    • 3
  • Wouter Rommens
    • 4
  • Danny Rejas
    • 2
  • Roberto Urrutia
    • 1
  • Koen Sabbe
    • 1
  • Moniek Gillis
    • 3
  • Kris Decleer
    • 5
  • Luc De Meester
    • 2
  • Wim Vyverman
    • 1
  1. 1.Dept. BiologyUniversity GentGentBelgium
  2. 2.Lab. Aquatic EcologyKULeuvenLeuvenBelgium
  3. 3.Dept. MicrobiologyUniversity GentGentBelgium
  4. 4.Lab. BotanyKULeuvenHeverleeBelgium
  5. 5.Institute for Nature ConservationBrusselBelgium

Personalised recommendations