Journal of Materials Science

, Volume 38, Issue 11, pp 2517–2523 | Cite as

The effects of fluid flow on secondary arm coarsening during dendritic solidification

  • Andrew M. Mullis
Article

Abstract

Although dendrites are the result of diffusion limited growth it has long been appreciated that flow within the parent melt can have a dramatic effect on these structures. A free boundary model of dendritic solidification is used to assess the effects on the secondary arm coarsening processes of fluid flow within the parent melt. It is found that for solutally controlled coarsening realistic interdendritic flow velocities of the order 10−3–10−2 m s−1 give rise to ripening rates which are comparable to diffusive transport. However, only flows with a component aligned from the secondary tip towards the root enhance the ripening rate. Oppositely aligned flows actually reduce the ripening rate. Thus, due to the four-fold symmetry of dendrites in cubic metals, the actual effect on the secondary arm spacing could be quite small. The results are shown to be in general agreement with recent microgravity experiments on dendritic coarsening.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Corrigan, M. B. Koss, J. C. la Combe, K. D. Dejager, L. A. Tennenhouse and M. E. Glicksman, Phys. Rev. E 60 (1999) 7217.Google Scholar
  2. 2.
    U. Bisang and J. H. Bilgram, ibid. 54 (1996) 5309.Google Scholar
  3. 3.
    T. Z. Kattamis, J. C. Coughin and M. C. Flemings, Trans. Met. Soc. AIME 239 (1967) 1504.Google Scholar
  4. 4.
    K. P. Young and D. H. Kirkwood, Met. Trans. 6A (1975) 197.Google Scholar
  5. 5.
    T. F. Bower, HD. Brody and M. C. Flemings, Trans. Metall. Soc. AIME 236 (1966) 624.Google Scholar
  6. 6.
    D. H. Kirkwood, Mater. Sci. Eng. 73 (1985) L1.Google Scholar
  7. 7.
    U. Feurer and R. Wunderlin, “Fachbericht der Deutschen Gesellscaft für Metallknde” (Oberursel, FRG, 1977).Google Scholar
  8. 8.
    M. Kahlweit, Scr. Metall. 2 (1968) 251.Google Scholar
  9. 9.
    M. E. Glicksman, N. B. Singh and M. Chopra, Mater. Res. Soc. Symp. Proc. 9 (1982) 461.Google Scholar
  10. 10.
    M. H. Johnston and C. S. Griner, Metall. Trans. 8A (1977) 77.Google Scholar
  11. 11.
    M. H. Johnston and R. A. Parr, Mater. Res. Soc. Symp. Proc. 9 (1982) 651.Google Scholar
  12. 12.
    Idem., Metall. Trans. 13B (1982) 85.Google Scholar
  13. 13.
    M. H. Johnston, P. A. Curreri, R. A. Parr and W. S. Alter, ibid. 16A (1985) 1683.Google Scholar
  14. 14.
    D. M. Stefanescu, P. A. Curreri and M. R. Fiske, ibid. 17A (1986) 1121.Google Scholar
  15. 15.
    M. H. MCCay, J. E. Lee and P. A. Curreri, ibid. 17A (1986) 2301.Google Scholar
  16. 16.
    L. A. Tennerhouse, M. B. Koss, J. C. Lacombe and M. E. Glicksman, J. Cryst. Growth 174 (1997) 82.Google Scholar
  17. 17.
    M. B. Koss, J. C. la Combe, L. A. Tennenhouse, M. E. Glicksman and E. A. Winsa, Metall. Mater. Trans. 30 (1999) 3177.Google Scholar
  18. 18.
    Q. Li and C. Beckermann, Phys. Rev. E 57 (1998) 3176.Google Scholar
  19. 19.
    Idem., Acta Mater. 47 (1999) 2345.Google Scholar
  20. 20.
    R. Ananth and W. W. Gill, J. Fluid Mech. 208 (1989) 575.Google Scholar
  21. 21.
    R. TÖnhardt and G. Amberg, J. Cryst. Growth 194 (1998) 406.Google Scholar
  22. 22.
    D. M. Anderson, G. B. MCFadden and A. A. Wheeler, Physica D 135 (2000) 175.Google Scholar
  23. 23.
    R. TÖnhardt and G. Amberg, Phys. Rev. E 62 (2000) 828.Google Scholar
  24. 24.
    X. Tong, C. Beckermann, A. Karma and Q. Li, ibid. 63 (2001) 061601.Google Scholar
  25. 25.
    C. Beckermann, H.-J. Diepers, I. Stienbach, A. Karma and X. Tong, J. Comp. Phys. 154 (1999) 468.Google Scholar
  26. 26.
    H.-J. Diepers, C. Beckermann and I. Stienbach, Acta Mater. 47 (1999) 3663.Google Scholar
  27. 27.
    A. R. Mitchell and D. F. Griffiths, “The Finite Difference Method in Partial Differential Equations” (Wiley, Chichester, 1980).Google Scholar
  28. 28.
    R. Kobayashi, Physica D 63 (1993) 410.Google Scholar
  29. 29.
    A. M. Mullis, Acta Mater. 47 (1999) 1783.Google Scholar
  30. 30.
    Idem., ibid. 46 (1999) 4609.Google Scholar
  31. 31.
    A. Hellawall, in “4th International Conference on Semi-Solid Processing of Alloys and Composites,” Sheffield 1996, edited by D. H. Kirkwood and P. Kapranos, p. 60.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Andrew M. Mullis
    • 1
  1. 1.Department of MaterialsUniversity of LeedsLeedsUK

Personalised recommendations