Origins of life and evolution of the biosphere

, Volume 33, Issue 1, pp 95–108 | Cite as

Searching for the Advantages of Virus Sex

  • Paul E. Turner

Abstract

Sex (genetic exchange) is a nearly universal phenomenon in biological populations. But this is surprising given the costs associated with sex. For example, sex tends to break apart co-adapted genes, and sex causes a female to inefficiently contribute only half the genes to her offspring. Why then did sex evolve? One famous model poses that sex evolved to combat Muller's ratchet, the mutational load that accrues when harmful mutations drift to high frequencies in populations of small size. In contrast, the Fisher-Muller Hypothesis predicts that sex evolved to promote genetic variation that speeds adaptation in novel environments. Sexual mechanisms occur in viruses, which feature high rates of deleterious mutation and frequent exposure to novel or changing environments. Thus, confirmation of one or both hypotheses would shed light on the selective advantages of virus sex. Experimental evolution has been used to test these ZFS25245ZFS25245classic models in the RNA bacteriophage φ6, a virus that experiences sex via reassortment of its chromosomal segments. Empirical data suggest that sex might have originated in φ6 to assist in purging deleterious mutations from the genome. However, results do not support the idea that sex evolved because it provides beneficial variation in novel environments. Rather, experiments show that too much sex can be bad for φ6; promiscuity allows selfish viruses to evolve and spread their inferior genes to subsequent generations. Here I discuss various explanations for the evolution of segmentation in RNA viruses, and the added cost of sex when large numbers of viruses co-infect the same cell.

experimental evolution genetic exchange microbe RNA sex virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, N. H. and Charlesworth, B.: 1998, 'Why Sex and Recombination?', Science 281, 1986-1990.Google Scholar
  2. Basler, C. F., Reid, A. H., Dybing, J. K., Janczewski, T. A., Fanning, T. G., Zheng, H., Salvatore, M., Perdue, M. L., Swayne, D. E., Garcia-Sastre, A., Palese, P. and Taubenberger, J. K.: 2001, 'Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes', Proc. Natl. Acad. Sci. USA 98, 2746-2751.Google Scholar
  3. Bennett, A. F.: 2002, 'Experimental Evolution: An Overview', in M. Pagel (ed.), Encyclopedia of Evolution, Oxford University Press, Oxford, pp. 339-342.Google Scholar
  4. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steeles, A. and Grassineau, N. V.: 2002, 'Questioning the evidence for Earth's oldest fossils', Nature 416, 76-81.Google Scholar
  5. Burch, C. L. and Chao, L.: 1999, 'Evolution by small steps and rugged landscapes in the RNA virus ö6', Genetics 151, 921-927.Google Scholar
  6. Butcher, S. J., Dokland, T., Ojala, P. M., Bamford, D. H. and Fuller, S. D.: 1997, 'Intermediates in the assembly pathway of the double-stranded RNA virus ö6', EMBO J. 16, 4477-4487.Google Scholar
  7. Chao, L.: 1988, 'Evolution of sex in RNA viruses', J. Theor. Biol. 133, 99-112.Google Scholar
  8. Chao, L.: 1990, 'Fitness of RNA virus decreased by Muller's ratchet', Nature 348, 454-455.Google Scholar
  9. Chao, L.: 1992, 'Evolution of sex in RNA viruses', Trends Ecol. Evol. 7, 147-151.Google Scholar
  10. Chao, L., Tran, T. T. and Tran, T. T.: 1997, 'The advantage of sex in RNA virus phi-6', Genetics 147, 953-959.Google Scholar
  11. Drake, J.W. and Holland, J. J.: 1999, 'Mutation rates among RNA viruses', PNAS 96, 13910-13913.Google Scholar
  12. Felsenstein, J.: 1988, 'Sex and the Evolution of Recombination', in R. E. Michod and B. R. Levin (eds), The Evolution of Sex: An Examination of Current Ideas, Sinauer, Sunderland, MA, pp. 74-86.Google Scholar
  13. Fisher, R. A.: 1930, The Genetical Theory of Natural Selection, Oxford University Press, Oxford.Google Scholar
  14. Gerrish, P. J. and Lenski, R. E.: 1998, 'The Fate of Competing Beneficial Mutations in an Asexual Population', Genetica 100, 127-144.Google Scholar
  15. Hurst, L. and Peck, J. R.: 1996, 'Recent advances in understanding the evolution and maintenance of sex', Trends Ecol. Evol. 11, 46-52.Google Scholar
  16. Iturriza-Gomara, M., Isherwood, B., Desselberger, U. and Gray, J.: 2001, 'Reassortment in vivo: Driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999', J. Virol. 75, 3696-3705.Google Scholar
  17. Kilbourne, E. D.: 1979, 'Molecular epidemiology-influenza as archetype', The Harvey Lectures 73, 225-258.Google Scholar
  18. Kondrashov, A.: 1993, 'Classification of hypotheses on the advantage of amphimixis', J. Heredity 84, 372-387.Google Scholar
  19. Malmberg, R. L.: 1977, 'The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4', Genetics 86, 607-621.Google Scholar
  20. Maynard Smith, J.: 1978, The Evolution of Sex, Cambridge University Press, Cambridge.Google Scholar
  21. Michod, R. E. and Levin, B. R.: 1988, The Evolution of Sex: An Examination of Current Ideas, Sinauer, Sunderland, MA.Google Scholar
  22. Mindich, L.: 1988, 'Bacteriophage ö6: A unique virus having a lipid-containing membrane and a genome composed of three dsRNA segments', Adv. Virus Res. 35, 137-176.Google Scholar
  23. Muller, H. J.: 1932, 'Some Genetic Aspects of Sex', Am. Nat. 66, 118-138.Google Scholar
  24. Muller, H. J.: 1964, 'The relation of recombination to mutational advance', Mut. Res. 1, 2-9.Google Scholar
  25. Nee, S. and Maynard Smith, J.: 1990, 'The evolutionary biology of molecular parasites', Parasitology 100, S5-S18.Google Scholar
  26. Olkkonen, V. M. and Bamford, D. H.: 1989, 'Quantitation of the adsorption and penetration stages of bacteriophage ö6 infection', Virology 171, 229-238.Google Scholar
  27. Onodera, S., Qiao, X., Qiao, J. and Mindich, L.: 1998, 'Directed changes in the number of double-stranded RNA genomic segments in bacteriophage ö6', Proc. Natl. Acad. Sci. USA 95, 3920-3924.Google Scholar
  28. Peck, J. R.: 1994, 'A ruby in the rubbish: Beneficial mutations, deleterious mutations and the evolution of sex', Genetics 137, 597-606.Google Scholar
  29. Peters, A. D. and Lively, C. M.: 2000, 'Epistasis and the Maintenance of Sex', in J. B. Wolf, E. D. Brodie III and M. Wade (eds), Epistasis and the Evolutionary Process, Oxford University Press, Oxford, pp. 99-112.Google Scholar
  30. Pressing, J. and Reanney, D.: 1984, 'Divided genomes and intrinsic noise', J. Mol. Evol. 20, 135-146.Google Scholar
  31. Qiao, X., Qiao, J., Onodera, S. and Mindich, L.: 2000, 'Characterization of ö13, a bacteriophage related to ö6 and containing three dsRNA genomic segments', Virology 275, 218-224.Google Scholar
  32. Semancik, J. S., Vidaver, A. K. and Van Etten, J. L.: 1973, 'Characterization of a segmented doublehelical RNA from bacteriophage ö6', J. Mol. Biol. 76, 617-625.Google Scholar
  33. Sevilla, N., Ruiz-Jarabo, C. M., Gomez-Mariano, G., Baranowski, E. and Domingo, E.: 1998, 'An RNA virus can adapt to the multiplicity of infection', J. Gen. Virol. 79, 2971-2980.Google Scholar
  34. Shields, W. M.: 1988, 'Sex and Adaptation', in R. E. Michod and B. R. Levin (eds), The Evolution of Sex: An Examination of Current Ideas, Sinauer, Sunderland, MA, pp. 253-269.Google Scholar
  35. Sokal, R. R. and Rohlf, F. J.: 1995, Biometry, 3rd ed., Freeman, San Francisco.Google Scholar
  36. Turner, P. E. and Chao, L.: 1998, 'Sex and the evolution of intrahost competition in RNA virus ö6', Genetics 150, 523-532.Google Scholar
  37. Turner, P. E. and Chao, L.: 1999, 'Prisoner's dilemma in an RNA virus', Nature 398, 441-443.Google Scholar
  38. Turner, P. E., Burch, C., Hanley, K. and Chao, L.: 1999, 'Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage ö6', J. Virol. 73, 2420-2424Google Scholar
  39. Tyler, K. and Fields, B.: 1986, 'Reovirus and its Replication', in B. Fields and D. Knipe (eds), Fundamental Virology, Raven Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Paul E. Turner
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyYale UniversityNew HavenU.S.A.

Personalised recommendations