Reconstructive and displacive transformations of tectosilicates

  • V. Dondur
  • S. MarkovicEmail author
  • R. Dimitrijevic
  • S. Macura
  • D. Arandjelovic


By using the thermally induced phase transformation initial zeolites were converted into pure carnegieite, stuffed derivative of cristobalite. The polymorphs obtained from Na-LTA are stoichiometric (NaAlSiO4), since those obtained from Na-FAU zeolite are non-stoichiometric (Na1-xAl1-xSi1+xO4). Stoichiometric carnegieite have cubic structure, while non-stoichiometric carnegieite crystallized in cubic and orthorhombic forms. 29Si MAS NMR spectra show a very large but expecting difference between stoichiometric and non-stoichiometric carnegieite. The spectrum of stoichiometric carnegieite has only one peak Si(4Al), while the spectrum of non-stoichiometric carnegieite consist few superimposed peaks assigned to Si(4Al), Si(3Al), Si(2Al), Si(1Al) and Si(0Al). DTA study indicates the occurrence of displacive phase transition of all synthesized carnegieite. The transition temperature is depending on silicon aluminum order: T m=690°C for stoichiometric, T m=565 and 660°C for non-stoichiometric, low-temperature and high-temperature carnegieite, respectively.

DTA carnegieite FAU zeolite LTA zeolite 


  1. 1.
    D. C. Palmer, Reviews in Mineralogy, 29 (1995) 83.Google Scholar
  2. 2.
    M. T. Dove, Am. Miner., 82 (1997) 213.Google Scholar
  3. 3.
    D. de Ligny, P. Richet, E. F. Westrum Jr. and J. Roux, Phys. Chem. Miner., 29 (2002) 267.CrossRefGoogle Scholar
  4. 4.
    V. Dondur and R. Dimitrijevic, J. Solid State Chem., 63 (1986) 46.CrossRefGoogle Scholar
  5. 5.
    R. Dimitrijevic and V. Dondur, J. Solid State Chem., 115 (1995) 214.CrossRefGoogle Scholar
  6. 6.
    V. Dondur, S. Markovic, R. Dimitrijevic and M. Mitrovic, Mat. Sci. Forum, 352 (2000) 105.CrossRefGoogle Scholar
  7. 7.
    C. Kosanovic, B. Subotic, I. Smit, A. Cizmek, M. Stubicar and A. Tonejc, J. Mat. Sci., 32 (1997) 73.CrossRefGoogle Scholar
  8. 8.
    J. M. Newsam, J. Phys. Chem., 92 (1988) 445.CrossRefGoogle Scholar
  9. 9.
    P. Norby, Zeolites, 10 (1990) 193.CrossRefGoogle Scholar
  10. 10.
    B. Badger and F. A. Hummel, J. Am. Ceram. Soc., 68 (1985) C-46.CrossRefGoogle Scholar
  11. 11.
    W. Schmitz, H. Siegel and R. Schollner, Cryst. Res. Technol., 16 (1981) 385.Google Scholar
  12. 12.
    R. Dimitrijevic, V. Dondur, P. Vulic, S. Markovic and S. Macura (in press).Google Scholar
  13. 13.
    M. Rokita, M. Handke and W. Mozgawa, J. Mol. Struct., 511–512 (1999) 277.CrossRefGoogle Scholar
  14. 14.
    A. Dyer, in An Introduction to Zeolite Molecular Sieves, Wiley, Chichester 1988.Google Scholar
  15. 15.
    M. Handke and W. Mozgawa, J. Mol. Struct., 348 (1995) 341.CrossRefGoogle Scholar
  16. 16.
    M. Handke and W. Mozgawa, Vib. Spectroscopy, 5 (1993) 75.CrossRefGoogle Scholar
  17. 17.
    E. M. Flanigan, H. Khatami and H. A. Szymanski, Adv. Chem. Series, 101 (1971) 201.CrossRefGoogle Scholar
  18. 18.
    G. Engelhardt and D. Michel, in High-Resolution Solid-State NMR of Silicates and Zeolite, Wiley, Chichester 1987.Google Scholar
  19. 19.
    J. F. Stebbins, in Mineral Physics and Crystallography, A Handbook of Physical Constants, American Geophysical Union 1995, p. 303.Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2003

Authors and Affiliations

  • V. Dondur
    • 1
  • S. Markovic
    • 1
    Email author
  • R. Dimitrijevic
    • 2
  • S. Macura
    • 3
  • D. Arandjelovic
    • 1
  1. 1.Faculty of Physical ChemistryBelgradeYugoslavia
  2. 2.Faculty of Mining and GeologyDepartment of CrystallographyBelgradeYugoslavia
  3. 3.Department of Biochemistry, Mayo FoundationRochesterUSA

Personalised recommendations