Advertisement

Genetic Resources and Crop Evolution

, Volume 50, Issue 4, pp 401–416 | Cite as

Participatory landrace selection for on-farm conservation: An example from the Central Valleys of Oaxaca, Mexico

  • Mauricio R. Bellon
  • Julien Berthaud
  • Melinda Smale
  • José Alfonso Aguirre
  • Suketoshi Taba
  • Flavio Aragón
  • Jaime Díaz
  • Humberto Castro
Article

Abstract

On-farm conservation is recognized as a key component of a comprehensive strategy to conserve crop genetic resources. A fundamental problem faced by any on-farm conservation project is the identification of crop populations on which efforts should be focused. This paper describes a method to identify a subset of landraces for further conservation efforts from a larger collection representing the diversity found in the Central Valleys of Oaxaca, Mexico. Mexico is a center of origin and diversity for maize (Zea mays L.). The 17 landraces selected from an initial collection of 152 satisfy two criteria. First, they represent the diversity present in the larger collection. Second, they appear to serve the interests of farmers in the region. Data for applying the method were elicited through participatory as well as conventional techniques. They incorporate the complementary perspectives of both men and women members of farm households, and of plant breeders and social scientists.

Farmer participation Landraces Maize (Zea mays L.) Mexico Oaxaca On-farm conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre Gomez J.A. 1999. Análisis Regional de la Diversidad del ´ Maíz en el Sureste de Guanajuato, Ph.D. Thesis, Universidad Nacional Autónoma de México, Facultad de Ciencias, Mexico, D.F.Google Scholar
  2. Anderson E. and Cutler H. 1942. Races of Zea mays. I. Their recognition and classification. Annals of the Missouri Botanical Garden 21: 69–88.Google Scholar
  3. Aragón-Cuevas F., Taba S., Díaz J., Castro Garciá H. and Hernández Casillas J.M. 2000. Mejoramiento participativo del maíz bolita de Oaxaca, México. In: Zavala F., Ortega P. R., Mejía C. J.A., Benítez R. I. and Guillén A. H. (eds), Memorias ´ del XVIII Congreso Nacional de Fitogenética: Notas científícas. Sociedad Mexicana de Fitogenética A. C., Chapingo, México, pp. 7.Google Scholar
  4. Balfourier F., Charmet G. and Grand-Ravel C. 1994. Conservation of allelic multiplicity and genotypic frequency by pooling wild populations of perennial rye grass. Heredity 73: 386-396.Google Scholar
  5. Bellon M.R. and Brush S.B. 1994. Keepers of maize in Chiapas, Mexico. Economic Botany 48: 196-209.Google Scholar
  6. Bellon M.R, Pham J.L. and Jackson M.T. 1997. Genetic conserva tion: a role for rice farmers. In: Maxted N., Ford-Lloyd B.V. and Hawkes J.G. (eds), Plant Conservation: the In Situ Approach. Chapman & Hall, London, pp. 263-289.Google Scholar
  7. Bellon M.R, Aguirre Gomez J.A., Smale M., Berthaud J., Manuel Rosas I., Solano A.M. et al. 2001. Participatory maize improvement: Comparing different interventions to enhance farmers' welfare and maintain genetic diversity in the Central Valleys of Oaxaca Paper presented at the workshop “In situ Conservation of Agrobiodiversity Review Workshop: Scientific and institutional experiences and implications for national policies.” Lima, Peru, August 14-18, 2001. (unpublished).Google Scholar
  8. Brush S.B. 1991. A farmer-based approach to conserving crop germplasm. Economic Botany 45: 153-165.Google Scholar
  9. Brush S.B. 1999. The issues of in situ conservation of crop genetic resources. In: Brush S.B. (ed.), Genes in the Field. International Plant Genetic Resources Institute, Rome, pp. 3-26.Google Scholar
  10. Ceccarelli S., Grando S., Tutwiler R., Baha J., Martini A.M., Salahieh H. et al. 2000. A methodological study on participatory barley breeding. I Selection phase. Euphytica 111: 91-104.Google Scholar
  11. Crossa J. and Vencovsky R. 1999. Sample size and variance effective population size for genetic resources conservation. Plant Genetic Resources Newsletter 119 Suppl.: 15-25.Google Scholar
  12. David J. 1992. Approche methodologique d'une gestion dynamique des ressources genetiques chez le ble tendre (Triticum aestivum L.), PhD Thesis, Institut National Agronomique Paris-Grignon, France.Google Scholar
  13. Federer W.T. 1995. Experimental design: Theory and application. The Macmillan Company, New York, NY.Google Scholar
  14. Franco J., Crossa J., Díaz J., Taba S., Villasenor S. and Eberhart S.A. 1997. A sequential clustering strategy for classifying gene bank accessions. Crop Science 37: 1656-1662.Google Scholar
  15. Frankel O.H. and Brown A.H.D 1984. Current plant genetic resources-a critical appraisal. In: Genetics, New Frontiers Vol. IV. Oxford & IBH Publishing Company, New Dehli, India, pp. 1-11.Google Scholar
  16. Goodman M.M. and Paterniani E. 1969. The races of maize. III. Choices of appropriate characters for racial classification. Economic Botany 23: 265-273.Google Scholar
  17. IPGRI (International Plant Genetic Resources Institute) 1993. Diversity for Development: The Strategy of the International Plant Genetic Resources Institute. International Plant Genetic Resources Institute, Rome, Italy.Google Scholar
  18. Louette D., Charrier A. and Berthaud J. 1997. In situ conservation of maize in Mexico: Genetic diversity and maize seed manage-ment in a traditional community. Economic Botany 51: 20-38.Google Scholar
  19. Marshall D.R. and Brown A.H.D. 1975. Optimum sampling straterecognition gies in genetic conservation. In: Frankel O.H. and Hawkes J.G. (eds), Crop genetic Resources for Today and Tomorrow. Cam-bridge University Press, Cambridge, UK, pp. 53-80.Google Scholar
  20. Maxted N., Ford-Lloyd B.V. and Hawkes J.G. (eds) 1997. Plant Conservation: The In Situ Approach. Chapman and Hall, Lon don.Google Scholar
  21. Olivieri I. and Gouyon P.H. 1990. The genetics of transient populations: research at the metapopulation level. Tree 5: 207-210.Google Scholar
  22. Ortega R., Sánchez J.J., Castillo F. and Hernádez J.M. 1991. Estado actual de los estudios sobre maices nativos de México. In: Ortega R., Palomino G., Castillo F., González V.A. and Livera M. (eds), Avances en el Estudio de lor Recursos Fitogeneticos de Mexico. Sociedad Mexicana de Fitotécnia, A.C., Chapingo, México, pp. 161-185.Google Scholar
  23. Ortega R. 1995. Origen de la agricultura e importancia de los valles centrales de Oaxaca. In: Dávila M.A. (ed.), La Tecnología Agrícola Tradicional. Instituto Indigenísta Interamericano /Consejo Nacional de Ciencia y Tecnología, Oaxaca, Mexico, pp. 189-200.Google Scholar
  24. Piperno D.R. and Flannery K.V. 2001. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications Proceedings of the National Academy of Science. 98: pp. 2101-2103.Google Scholar
  25. Pope K.O., Pohl M.E.D., Jones J.G., Lentz D.L. and von Nagy C. 2001. Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science 292: 1370-1373.Google Scholar
  26. Sanchez J.J., Goodman M.M. and Rawlings J.O. 1993. Appropriate characters for racial classification in maize. Economic Botany 47: 44-59.Google Scholar
  27. SAS Institute Inc., Cary, North Carolina 1996. SAS/STAT??Software: Changes and enhancements through Release 6.11.Google Scholar
  28. Smale M. and Bellon M.R. 1999. A conceptual framework for ´ valuing on-farm genetic resources. In: Wood D. and Lenné J. (eds), Agrobiodiversity: Characterization, Utilization and Man agement. CABI Publishing, Wallingford, UK, pp. 387-408.Google Scholar
  29. Smale M., Aguirre M.A., Bellon M., Mendoza J. and Rosas I.M. 1999. Farmer management of maize diversity in the Central Valleys of Oaxaca, Mexico: CIMMYT/INIFAP 1998 Baseline Socioeconomic Survey. CIMMYT Economics Working Paper 99-09. International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F.Google Scholar
  30. Sperling L., Loevinsohn M.E. and Ntabomvura B. 1993. Rethinking the farmer's role in plant breeding. Local bean experts and Camon station selection in Rwanda. Experimental Agriculture 29: 509-519.Google Scholar
  31. Taba S., Aragon F., Díaz J., Castro F.H. and Hernández J.M. 1998a. Cultivares locales de maíz para su conservación y mejoramiento en Oaxaca, México. In: Ramírez V.P., Zavala F.G., Gomez M., Rincon F.S. and Mejía A.C. (eds), Memorias del XVII Congreso de Fitogenética. Notas Científicas. Sociedad Mexicana de Fitogenética A. C., Chapingo, Mexico Notas Científícas, p. 218.Google Scholar
  32. Taba S., Diaz J., Franco J. and Crossa J. 1998b. Evaluating Caribbean maize for developing a core subset. Crop Science 38: 1378-1386.Google Scholar
  33. Ward J.H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236-244.Google Scholar
  34. Wellhausen E., Roberts J., Roberts L.M. and Hernández E. 1952. Races of Maize in Mexico: Their Origin, Characteristics, and Distribution. The Bussey Institution, Harvard University, Cambridge, Massachusetts.Google Scholar
  35. Wishart D. 1987. CLUSTAN User Manual. 4th edn. Computing Laboratory University of St. Andrews, Edinburgh, UK.Google Scholar
  36. Witcombe J.R., Joshi A., Joshi K.D. and Sthapit B.R. 1996. Farmer participatory crop improvement. I: Varietal selection and breeding methods and their impact on biodiversity. Experimental Agriculture 32: 445-460.Google Scholar
  37. Wolfe J.H. 1970. Pattern clustering by multivariate mixture analy sis. Multivariate Behavioral Research 5: 329-350.Google Scholar
  38. Wood D. and Lenne J.M. (eds) 1999. Agrobiodiversity: Characterization, Utilization and Management. CABI Publishing, Wallingford, UK.Google Scholar
  39. Zeven A.C. 1998. Landraces: a review of definitions and classifica tions. Euphytica 104: 127-139.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Mauricio R. Bellon
    • 1
  • Julien Berthaud
    • 1
    • 2
  • Melinda Smale
    • 1
    • 3
  • José Alfonso Aguirre
    • 4
  • Suketoshi Taba
    • 1
  • Flavio Aragón
    • 5
  • Jaime Díaz
    • 1
  • Humberto Castro
    • 5
  1. 1.International Maize and Wheat Improvement Center (CIMMYT)MexicoMexico
  2. 2.Institut de Recherche pour le Développement (IRD)France
  3. 3.International Plant Genetic Resources InstituteRomeItaly
  4. 4.Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)CelayaMexico
  5. 5.Instituto Nacional de Investigaciones Forestales, Campo Experimental Valles Centrales, Oaxaca, Agrícolas y Pecuarias (INIFAP), ManuelOaxacaMexico

Personalised recommendations