Russian Microelectronics

, Volume 32, Issue 3, pp 151–157 | Cite as

Mechanism of the Ultradeep Anisotropic Chemical Etching of Si(100) in the Microfabrication of Piezoresistive Pressure Sensors

  • L. V. Sokolov
  • S. V. Arkhipov
  • V. M. Shkol'nikov


An experimental examination of a thin diaphragm for integrated piezoresistive pressure sensors is reported. The diaphragm is fabricated by ultradeep anisotropic chemical etching of monocrystalline silicon. The mechanism of the process is investigated by exploring the morphology of the etched surface. Process-induced pyramidal hillocks, pits, and trenches are measured.


Silicon Trench Pressure Sensor Chemical Etching Monocrystalline Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Advancement of Technological Base and the Production of Modern Electronic Equipment: A Goal-Oriented Federal Program.Google Scholar
  2. 2.
    Sokolov, L.V., Sensing Devices and Systems Using MEMS Technologies, Zarubezh. Elektron. Tekh., 1999, no. 1, pp. 93–115.Google Scholar
  3. 3.
    Sokolov, L.V. and Shkol'nikov, V.M., Dominant Trends in the Microfabrication of Mechanical Parts for Integrated Silicon Sensors, High-Complexity Sensor Systems, and MEMS's, in XIV nauchno-tekhnicheskaya konferentsiya “Datchiki i preobrazovateli informatsii sistem izmereniya, kontrolya i upravleniya” (XIV Conf. on Sensors and Transducers for Measurement, Inspection, and Control), Moscow State Institute of Electronics and Mathematics (Technical University), Moscow, Russia, 2002, pp. 157–158.Google Scholar
  4. 4.
    Sokolov, L.V., Modern Microfabrication Technologies for Mechanical Parts of Integrated Silicon Sensors, High-Complexity Sensor Systems, and MEMS's, Zarubezh. Elektron. Tekh., 2002, no. 2, pp. 38–59.Google Scholar
  5. 5.
    Dziuban, J. and Gorecka-Drzaga, A., Mold-Type Field-Emission Array Fabrication by the Use of Fast Silicon Etching, J. Vac. Sci. Technol., 2001, vol. 19, no. 3, pp. 897–899.Google Scholar
  6. 6.
    Scroder, H. and Obermeier, E., A New Model for Si {100} Convex Corner Undercutting in Anisotropic KOH Etching, J. Micromech. Microeng., 2000, vol. 10, no. 2, pp. 163–170.Google Scholar
  7. 7.
    Li, X., Lin, R., et al., Study on Convex-Corner Undercutting Formed by Masked-Maskless Etching in Aqueous KOH, J. Micromech. Microeng., 2000, vol. 10, no. 3, pp. 309–313.Google Scholar
  8. 8.
    Powell, O. and Harrison, H.B., Anisotropic Etching of {100} and {110} Planes in (100) Silicon, J. Micromech. Microeng., 2001, vol. 11, no. 3, pp. 217–220.Google Scholar
  9. 9.
    Holke and Henderson, H.T., Ultra-deep Anisotropic Etching of (110) Silicon, J. Micromech. Microeng., 2001, vol. 9, no. 1, pp. 51–57.Google Scholar
  10. 10.
    Schroder, H., Obermeier, E., and Steckenborn, A., Micropyramidal Hillocks on KOH Etched {100} Silicon Surfaces: Formation, Prevention and Removal, J. Micromech. Microeng., 2001, vol. 9, no. 2, pp. 139–145.Google Scholar
  11. 11.
    Sokolov, L.V. and Shkol'nikov, V.M., An Optimization Method for the Micromechanical Part of an E-type Integrated Silicon Pressure Sensor, in Tezisy dokladov na tret'ei Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Elektronika i informatika-XXI vek” (Electronics and Information Science: XXI Century, 3rd Int. Conf., Abstracts of Papers), Zelenograd, Moscow, Russia, 2000.Google Scholar
  12. 12.
    Vaganov, V.I., Integral'nye tenzopreobrazovateli (Integrated Piezoresistive Sensors), Moscow: Energoatomizdat, 1983, pp. 67–71.Google Scholar

Copyright information

© MAIK Nauka/Interperiodica 2003

Authors and Affiliations

  • L. V. Sokolov
    • 1
  • S. V. Arkhipov
    • 1
  • V. M. Shkol'nikov
    • 1
  1. 1.Moscow State Institute of AviationMoscowRussia

Personalised recommendations